Aim: Understanding the drivers of the structure of coral reef fish assemblages is vital for their future conservation. Quantifying the separate roles of natural drivers from the increasing influence of anthropogenic factors, such as fishing and climate change, is a key component of this understanding. It follows that the intrinsic role of historical biogeographical and geomorphological factors must be accounted for when trying to understand the effects of contemporary disturbances such as fishing.
Location: Comoros, Madagascar, Mozambique and Tanzania, Western Indian Ocean (WIO).
Methods: We modeled patterns in the density and biomass of an assemblage of reef-associated fish species from 11 families, and their association with 16 biophysical variables.
Results: Canonical analysis of principal coordinates revealed strong country affiliations of reef fish assemblages and distance-based linear modeling confirmed geographic location and reef geomorphology were the most significant correlates, explaining 32% of the observed variation in fish assemblage structure. Another 6%-8% of variation was explained by productivity gradients (chl_), and reef exposure or slope. Where spatial effects were not significant between mainland continental locations, fishing effects became evident explaining 6% of the variation in data. No correlation with live coral was detected. Only 37 species, predominantly lower trophic level taxa, were significant in explaining differences in assemblages between sites.
Main Conclusions: Spatial and geomorphological histories remain a major influence on the structure of reef fish assemblages in the WIO. Reef geomorphology was closely linked to standing biomass, with "ocean-exposed" fringing reefs supporting high average biomass of ~1,000 kg/ha, while "lagoon-exposed fringing" reefs and "inner seas patch complex" reefs yielded substantially less at ~500kg/ha. Further, the results indicate the influence of benthic communities on fish assemblages is scale dependent. Such insights will be pivotal for managers seeking to balance long-term sustainability of artisanal reef fisheries with conservation of coral reef systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468081 | PMC |
http://dx.doi.org/10.1002/ece3.5044 | DOI Listing |
Sci Rep
January 2025
Tethys Research Institute, Viale G.B. Gadio 2, 20121, Milan, Italy.
To investigate the seasonal migratory behaviour of spinetail devil rays, Mobula mobular, across the Mediterranean Sea, we used satellite telemetry to track nine individuals between 2016 and 2021. The species is listed as Endangered in the IUCN's Red List of Threatened Species and appears to be most vulnerable to fishing impacts when gathering in large assemblages. The only known targeted devil ray fishery harvests significant numbers each winter off Gaza.
View Article and Find Full Text PDFMar Environ Res
January 2025
National Institute of Aquatic Resources (DTU Aqua), Technical University of Denmark, Silkeborg, Denmark.
In the North Sea, offshore oil and gas (O&G) platforms must be totally removed through decommissioning at the end of their productive life. However, the role of O&G platforms in marine ecosystems, especially for fish assemblages, is not well enough defined yet. Here, we document the association between an O&G platform in the North Sea and the fish assemblages along a distance gradient of 1-600 m from the platform.
View Article and Find Full Text PDFEcol Appl
January 2025
Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Fire shapes biodiversity in many forested ecosystems, but historical management practices and anthropogenic climate change have led to larger, more severe fires that threaten many animal species where such disturbances do not occur naturally. As predators, owls can play important ecological roles in biological communities, but how changing fire regimes affect individual species and species assemblages is largely unknown. Here, we examined the impact of fire severity, history, and configuration over the past 35 years on an assemblage of six forest owl species in the Sierra Nevada, California, using ecosystem-scale passive acoustic monitoring.
View Article and Find Full Text PDFPLoS One
January 2025
College of Natural and Computational Sciences, Hawai'i Pacific University, Honolulu, HI, United States of America.
Climate change is imposing multiple stressors on marine life, leading to a restructuring of ecological communities as species exhibit differential sensitivities to these stressors. With the ocean warming and wind patterns shifting, processes that drive thermal variations in coastal regions, such as marine heatwaves and upwelling events, can change in frequency, timing, duration, and severity. These changes in environmental parameters can physiologically impact organisms residing in these habitats.
View Article and Find Full Text PDFNat Commun
January 2025
Lancaster Environment Centre, Lancaster University, Lancaster, UK.
Escalating climate and anthropogenic disturbances draw into question how stable large-scale patterns in biological diversity are in the Anthropocene. Here, we analyse how patterns of reef fish diversity have changed from 1995 to 2022 by examining local diversity and species dissimilarity along a large latitudinal gradient of the Great Barrier Reef and to what extent this correlates with changes in coral cover and coral composition. We find that reef fish species richness followed the expected latitudinal diversity pattern (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!