In this study, we report a highly stereoselective and versatile synthesis of spiro pyrazolones, promising motifs that are being employed as pharmacophores. The new synthetic strategy merges organocatalysis and metal catalysis to create a synergistic catalysis using proline derivatives and Pd catalysts. This protocol is suitable for late-stage functionalization, which is very important in drug discovery. Additionally, a thorough computational study proved to be very useful to elucidate the function of the different catalysts along the reaction, showing a peculiar feature: the -CPhOSiMe group of the proline catalyst switches its role during the reaction. In the initial Michael reaction, this group plays its commonly-assumed role of bulky blocking group, but the same group generates π-Pd interactions and acts as a directing group in the subsequent Pd-catalyzed Conia-ene reaction. This finding might be very relevant especially for processes with many steps, such as cascade reactions, in which functional groups are assumed to play the same role during all reaction steps.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6457335PMC
http://dx.doi.org/10.1039/c8sc05258aDOI Listing

Publication Analysis

Top Keywords

synergistic catalysis
8
role reaction
8
reaction
6
group
5
proline bulky
4
bulky substituents
4
substituents consecutively
4
consecutively steric
4
steric hindrances
4
hindrances directing
4

Similar Publications

Enantioselective Vinylogous Addition of Enones to Allenes Enabled by Synergistic Borane/Palladium Catalysis.

J Am Chem Soc

December 2024

State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.

Herein, we report a method for enantioselective vinylogous addition of enones to alkoxyallenes enabled by synergistic borane/palladium catalysis. The inductive effect provided by borane coordination to the ketone was essential for closing the gap between the conditions needed for the generation of a dienolate and those needed for initiation of the palladium catalytic cycle by protonation of the metal catalyst. Furthermore, we accomplished the first example of stereodivergent synthesis with chiral borane/transition-metal catalysts.

View Article and Find Full Text PDF

Constructing Bridge Hydroxyl Groups on the Ru/MO/HZSM-5 (M = W, Mo) Catalysts to Promote the Hydrolysis Oxidation of Multicomponent VOCs.

Environ Sci Technol

December 2024

Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.

Chlorinated and oxygenated volatile organic compounds (CVOCs and OVOCs) pose a significant threat to human health. Catalytic oxidation effectively removes these pollutants, but catalyst deactivation is a challenge. Our study focused on the hydrolysis oxidation of chlorobenzene (CB) and ethyl acetate (EA) over Ru/MO/HZSM-5 (M = W, Mo).

View Article and Find Full Text PDF

Electrocatalytic reduction of NO3- is a green and sustainable method that not only helps to treat industrial pollutants in wastewater, but also produces valuable chemicals. However, the slow dynamics of the proton-coupled electron transfer process results in a high barrier and low conversion efficiency. In this work, the Se-deficient FeSe2/Fe3O4 heterojunction was synthesized, which showed excellent electrochemical performance in 0.

View Article and Find Full Text PDF

Valence-engineering modulation of MoS clusters for enhancing biocatalytic activity.

Nanoscale

December 2024

Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.

Earth-abundant MoS with the advantages of a stable structure, tunable bandgap, and easy shear has great potential for applications in the fields of catalysis, biomedicine, and so on. However, the biocatalytic activity of MoS remains little investigated and is insufficient for biomedical applications. In this work, we develop ultra-small and water-soluble MoS clusters with superior antioxidant activity and enzyme-like activity valence-engineering modulation with Ce doping.

View Article and Find Full Text PDF

Inducing immunogenic cell death (ICD) is a promising approach to elicit enduring antitumor immune responses. Hence, extensive efforts are being made to develop ICD inducers. Herein, a cascaded dual-atom nanozyme with Fe and Cu sites (FeCu-DA) as an efficient ICD inducer is presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!