It is an important topic to achieve homochirality both at a molecular and supramolecular level. While it has long been regarded that "majority rule" guides the homochiral self-assembly from an enantiomer mixture, it still remains a big challenge to manipulate the global homochirality in a complex system containing chiral species that are not enantiomers. Here, we demonstrate a new example wherein homochiral nanotubes self-assembled from a mixture of heterochiral lipids that deviated from the "majority rule". We have found that when two heterochiral lipids with mirror headgroups but a 2-methylene discrepancy in alkyl chain length are mixed, homochiral nanotubes are always formed regardless of their mixing ratio. Remarkably, the helicity of the nanotube is exclusively controlled by the molecular chirality of the lipids with shorter alkyl chains, , the chiral self-assembly was dominated by the lipid with the shorter alkyl chain. MD simulation reveals that the match of both the alkyl chain length and hydrogen-bonding between two kinds of lipids plays an important role in the assembly. This work provides a new insight into the supramolecular chirality of complex systems containing multi chiral species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461104 | PMC |
http://dx.doi.org/10.1039/c9sc00215d | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China. Electronic address:
The construction of helical structures through self-assembly and the exploration of their formation mechanisms not only amplify chiroptical properties but also provide profound insights into the structures and functions of natural helices. In this study, we developed a chiral Au(I) system based on BINAP and alkynyl ligands. The modification of the length or number of alkyl chains at the terminal positions of the alkynyl ligands significantly impacted the self-assembly behavior of the complexes.
View Article and Find Full Text PDFAnal Cell Pathol (Amst)
January 2025
Department of Urology, The First Hospital of Jilin University, Changchun, China.
This study aims to study how gold nanoparticles (AuNPs) function in the recruitment and polarization of tumor-associated macrophages (TAMs) in hormone-sensitive prostate cancer (HSPC) and castration-resistant prostate cancer (CRPC). Phorbol ester (PMA)-treated THP-1 cells were cocultured with LNCaP or PC3 cells to simulate TAMs. Macrophage M2 polarization levels were detected using flow cytometry and M2 marker determination.
View Article and Find Full Text PDFDes Monomers Polym
January 2025
Leibniz-Institut für Polymerforschung Dresden e.V, Dresden, Germany.
Enhancing both ionic conductivity and mechanical robustness remains a major challenge in designing solid-state electrolytes for lithium batteries. This work presents a novel approach in designing mechanically robust and highly conductive solid-state electrolytes, which involves ionic liquid-based cross-linked polymer networks incorporating polymeric ionic liquids (PILs). First, linear PILs with different side groups were synthesized for optimizing the structure.
View Article and Find Full Text PDFDalton Trans
January 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
N,O-Heterocyclic ligands such as 2,9-diamide-1,10-phenanthroline dicarboxamide (DAPhen) and bis-lactam-1,10-phenanthroline (BLPhen) exhibit excellent separation performance for Am(III) and Eu(III) in high-level liquid waste. However, DAPhen-based ligands show poor extraction capacity, and BLPhen ligands suffer from decomposition in acidic solutions, which hinders their application in practical separation processes. To develop ligands with superior performance, two new completely preorganized and highly stabilized bis-lactam-1,10-phenanthroline (BLPhen) ligands with varying alkyl chain lengths were synthesized, demonstrating exceptional extraction and separation of Am(III) from Eu(III) with maximum separation factors of 68 and 53, respectively.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia. Electronic address:
The discovery of novel anti-cancer drugs motivated us to synthesize a new series of triple 1,2,3-triazole-based arm scaffolds featuring distinct un functionalized alkyl and/or aryl side chains with possible anti-cancer action using the click chemistry approach under both conventional and green microwave irradiation (MWI) methods. The Cu(I) catalyzed cycloaddition reaction of targeted tris-alkyne with un functionalized aliphatic and aromatic azides has been adopted as an efficient approach for synthesizing the desired click adducts. Microwave irradiation improved the synthetic processes, resulting in higher yields and faster reaction times.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!