Ovarian cancer is the fifth main cause of pre-senescent death in women. Although chemotherapy is generally an efficient treatment, its side effects and the occurrence of chemotherapeutic resistance have prompted the need for alternative treatments. In this study, α-mangostin and apigenin were evaluated as possible anticancer alternatives to the chemotherapeutic drug doxorubicin, used herein as a positive control. The ovarian adenocarcinoma cell line SKOV-3 (ATCC No. HTB77) was used as model ovarian cancer cells, whereas the skin fibroblast line CCD-986Sk (ATCC No. CRL-1947) and lung fibroblast line WI-38 (ATCC No. CCL-75) were used as model untransformed cells. Apigenin and doxorubicin inhibited the growth of SKOV-3 cells in a dose- and time-dependent manner. After 72 hr exposure, doxorubicin was mostly toxic to SKOV-3 cells, whereas apigenin was toxic to SKOV-3 cells but not CCD-986Sk and WI-38 cells. α-Mangostin was more toxic to SKOV-3 cells than to CCD-986Sk cells. A lower cell density, cell shrinkage, and more unattached (floating round) cells were observed in all treated SKOV-3 cells, but the greatest effects were observed with α-mangostin. With regard to programmed cell death, apigenin caused early apoptosis within 24 hr, whereas α-mangostin and doxorubicin caused late apoptosis and necrosis after 72 hr of exposure. Caspase-3 activity was significantly increased in α-mangostin-treated SKOV-3 cells after 12 hr of exposure, whereas only caspase-9 activity was significantly increased in apigenin-treated SKOV-3 cells at 24 hr. Both α-mangostin and apigenin arrested the cell cycle at the G/M phase, but after 24 and 48 hr, respectively. Significant upregulation of (apoptosis-associated gene) and (inflammation-associated gene) transcripts was observed in apigenin- and α-mangostin-treated SKOV-3 cells, respectively. α-Mangostin and apigenin are therefore alternative options for SKOV-3 cell inhibition, with apigenin causing rapid early apoptosis related to the intrinsic apoptotic pathway, and α-mangostin likely being involved with inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467359PMC
http://dx.doi.org/10.5487/TR.2019.35.2.167DOI Listing

Publication Analysis

Top Keywords

skov-3 cells
32
α-mangostin apigenin
16
cells
14
ovarian cancer
12
toxic skov-3
12
cells α-mangostin
12
skov-3
11
α-mangostin
8
cell
8
cell cycle
8

Similar Publications

Hyperthermia Potentiates the Effectiveness of Anticancer Drugs-Cisplatin and Tamoxifen on Ovarian Cancer Cells In Vitro.

Int J Mol Sci

December 2024

Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland.

Ovarian cancer is one of the most prevalent cancers among women. Due to the frequent problems during treatment, such as relapses or the development of resistance to treatment, new methods of treating this disease are being sought. A special attention is directed towards the combination therapies combining several different anticancer agents.

View Article and Find Full Text PDF

Combination of paclitaxel with rosiglitazone induces synergistic cytotoxic effects in ovarian cancer cells.

Sci Rep

December 2024

Department of Zoology, Biomedical Technology, Human Genetics, and WBC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.

Ovarian cancer is known to be a challenging disease to detect at an early stage and is a major cause of death among women. The current treatment for ovarian cancer typically involves a combination of surgery and the use of drugs such as platinum-based cytotoxic agents, anti-angiogenic drugs, etc. However, current treatment methods are not always effective in preventing the recurrence of ovarian cancer.

View Article and Find Full Text PDF

Background: Ovarian cancer (OV) is a common malignancy in the female reproductive system, characterized by poor prognosis and high recurrence rates. The discovery of dependable molecular markers is crucial for improving the timeliness of detection, diagnosis, and treatment, ultimately aiming to lower fatality rates. CNNM4 (cyclin and CBS domain divalent metal cation transport mediator 4), a member of the CNNM (Cyclin M) family, binds to PRL (prolactin) to regulate magnesium homeostasis and influence tumor cell proliferation.

View Article and Find Full Text PDF

PLGA-PEG-c(RGDfK)- E Micelles With a Therapeutic Potential for Targeting Ovarian Cancer.

IET Nanobiotechnol

December 2024

Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200241, China.

As a naturally derived inhibitor of autophagy, Kushenol E (KE) is a biprenylated flavonoid and is isolated from , which has been used for the treatment of cancer, hepatitis, and skin diseases. However, KE, as a poorly soluble drug, exhibited strong autophagy regulating activity in in vitro cancer cell lines, but no related studies have reported its antiovarian cancer property. Therefore, it is very beneficial to enhance the antineoplastic properties of KE by establishing an ovarian tumor-targeting nanoparticle system modified with tumor-homing c(RGDfK) peptides.

View Article and Find Full Text PDF

A novel targeted anticancer drug delivery strategy: Cnidium officinale polysaccharide conjugated with carboxymethyl-5-fluorouracil and folic acid for ovarian cancer therapy.

Int J Biol Macromol

January 2025

Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China. Electronic address:

To mitigate adverse reactions induced by 5-fluorouracil (5-FU), Cnidium officinale fraction 2 (F2) polysaccharides served as the macromolecular carrier, facilitating its reaction with carboxymethyl-5-fluorouracil (C-5-FU) for producing F2-C-5-FU. Subsequently, this compound could react with folic acid (FA) through the ester bond, forming F2-C-5-FU-FA, as verified through NMR analysis. The in vitro anticancer efficacy of F2-C-5-FU-FA was evaluated using SKOV-3 cells that expressed folate receptor (FR) and FR-deficient A549 cells, showing greater cytotoxicity in the SKOV-3 cell line due to the FRs on the cell membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!