Fra-1, a member of the activator protein 1 (AP-1) family, is overexpressed in triple-negative breast cancer (TNBC) and plays crucial roles in tumor growth. Here we report the identification of 118 proteins interacting with endogenous chromatin-bound Fra-1 in TNBC cells, highlighting DDX5 as the most enriched Fra-1-interacting protein. DDX5, a previously unrecognized protein in the Fra-1 transcriptional network, shows extensive overlap with Fra-1 cistrome and transcriptome that are highly associated with the TNBC cell growth. We provide evidence that DDX5 expression enhances Fra-1 transcriptional activity and potentiates Fra-1-driven cell proliferation. Furthermore, we show that the DDX5 target gene signature predicts poor clinical outcome in breast cancer patients. DDX5 protein level was higher in triple-negative basal-like tumors than in non-basal-like tumors, including luminal A, luminal B, and HER2-enriched subtypes. Collectively, by combining proteomic and genomic approaches we reveal a role for DDX5 as a regulatory protein of Fra-1 signaling and suggest DDX5 as a potential therapeutic target for TNBC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41388-019-0824-4 | DOI Listing |
J Cancer
January 2025
Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
Exploration of molecular markers is an ongoing focus in the field of bladder cancer research. Based on data from public databases, was identified as upregulated in bladder urothelial carcinoma (BLCA); however, its exact function and regulatory mechanism in this context remain unclear. To investigate the clinical implications of , we examined its levels in 90 BLCA and adjoining normal tissue samples.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan.
In almost all cancers, the p53 pathway is disabled and cancer cells survive. Hence, it is crucially important to induce cell death independent of p53 in the treatment of cancers. The transcription factor E2F1 is controlled by binding of the tumor suppressor pRB, and induces apoptosis by activating the gene, an upstream activator of p53, when deregulated from pRB by loss of pRB function.
View Article and Find Full Text PDFJ Pharm Anal
November 2024
Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, 14263, USA.
Image 1.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China. Electronic address:
Aims: High telomerase activity has been detected in over 85 % of tumors, with the activation of hTERT being the most crucial mechanism for re-establishing telomerase activity. Activation of hTERT maintains telomere length in cells, enabling cancer cells to proliferate indefinitely. Nevertheless, the specific mechanism of telomerase activation in non-small cell lung cancer (NSCLC) remains unclear, and post-transcriptional regulation of hTERT could be a potential activation mechanism.
View Article and Find Full Text PDFJ Med Virol
December 2024
Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!