The dynamic and structural properties of axonemal tubulins support the high length stability of cilia.

Nat Commun

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.

Published: April 2019

Cilia and flagella play essential roles in cell motility, sensing and development. These organelles have tightly controlled lengths, and the axoneme, which forms the core structure, has exceptionally high stability. This is despite being composed of microtubules that are often characterized as highly dynamic. To understand how ciliary tubulin contribute to stability, we develop a procedure to differentially extract tubulins from different components of axonemes purified from Chlamydomonas reinhardtii, and characterize their properties. We find that the microtubules support length stability by two distinct mechanisms: low dynamicity, and unusual stability of the protofilaments. The high stability of the protofilaments manifests itself in the formation of curved tip structures, up to a few microns long. These structures likely reflect intrinsic curvature of GTP or GDP·Pi tubulin and provide structural insights into the GTP-cap. Together, our study provides insights into growth, stability and the role of post-translational modifications of axonemal microtubules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479064PMC
http://dx.doi.org/10.1038/s41467-019-09779-6DOI Listing

Publication Analysis

Top Keywords

length stability
8
high stability
8
stability protofilaments
8
stability
7
dynamic structural
4
structural properties
4
properties axonemal
4
axonemal tubulins
4
tubulins support
4
support high
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!