Transforming growth factor beta (TGF-β) can stimulate osteogenesis as a multifunctional protein. The present study was to explore if TGF-β can prevent denervation-induced reduction of bone formation. The 6-week-old male mice were treated with recombinant human TGF-β1 (rhTGF-β1). Bone formation, endochondral bone growth rates, and gene expression of osteoblast markers were measured in the skeletal tissue by real-time PCR. RhTGF-β1 treatment prevented the denervation-induced decrease in bone formation rates, endochondral growth, and expression of Cbfa1/Runx2 (runt-related transcription factor 2), Ostecalcin (OC), and ColIA1. TGF-β1 partially inhibited the denervation-induced ubiquitination of Cbfa1/Runx2 in mouse cancellous bones via ubiquitin-proteasome pathway. TGF-β prevents denervation-induced reduction of bone formation and promotes the bone regeneration through inhibiting ubiquitin-proteasome pathway at least partially.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6522721PMC
http://dx.doi.org/10.1042/BSR20190350DOI Listing

Publication Analysis

Top Keywords

bone formation
20
denervation-induced reduction
12
reduction bone
12
ubiquitin-proteasome pathway
12
tgf-β prevents
8
prevents denervation-induced
8
bone
8
formation promotes
8
promotes bone
8
bone regeneration
8

Similar Publications

Background: Osteoporosis (OP) is a systemic disease characterized by low bone mass. New progress has been made in the study of OP, such as lipid peroxidation. However, the role of lipid peroxides in osteoclast differentiation is still unclear.

View Article and Find Full Text PDF

Myelomatous bone disease is a complication characterized by lytic bone lesions, reduced bone formation, bone pain, and increased fracture risk. Understanding these underlying mechanisms is crucial for developing effective therapeutic approaches. Here we show the role of enhancer of zeste homolog 2 (EZH2) in bone lesions induced by myeloma cells.

View Article and Find Full Text PDF

The delicate balance between bone formation by osteoblasts and bone resorption by osteoclasts maintains bone homeostasis. Nuclear receptors (NRs) are now understood to be crucial in bone physiology and pathology. However, the function of the Farnesoid X receptor (FXR), a member of the NR family, in regulating bone homeostasis remains incompletely understood.

View Article and Find Full Text PDF

Background: In addition to its important roles in blood coagulation and bone formation, vitamin K (VK) contributes to brain function. Low dietary VK intake, which is common among older adults, is associated with age-related cognitive impairment.

Objective: To elucidate the biological mechanisms underlying VK's effects on cognition, we investigated the effects of low VK (LVK) intake on cognition in C57BL/6 mice.

View Article and Find Full Text PDF

Objective: Fracture risk is increased in longstanding type 2 diabetes (T2D). High-resolution peripheral quantitative CT scans have demonstrated higher cortical porosity in T2D complicated by microvascular disease (MVD). We investigated if cortical bone resorption is followed by inadequate bone formation in individuals with T2D complicated by MVD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!