Plant NAC proteins constitute one of the largest transcription factor families. They play pivotal functions during responses to various abiotic stresses. However, knowledge on roles of NAC proteins in abiotic stress tolerance as well as corresponding mechanisms has not been fully studied in perennial woody plants, including domesticated apple (Malus domestica). In the present study, we characterized the role of apple MdNAC1 transcription factor in response to drought stress. Apple plants overexpressing MdNAC1 gene exhibited promoted tolerance to drought stress, as evident by reduced water loss and electrolyte leakage in leaves, and maintenance of photosynthesis and photosynthetic pigments content under drought conditions. In addition, the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were significantly lower for transgenic apple lines than those for nontransgenic plants under drought conditions. This was accompanied by higher activities of several antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as increased expression of the associated genes in transgenic lines. Together, our results indicate that overexpression of the apple MdNAC1 gene enhances drought stress tolerance in apple plants by promoting higher photosynthesis and activities of ROS-scavenging enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2019.04.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!