Background: Tropical rainforests (TRFs) harbour almost half of the world's vascular plant species diversity while covering only about 6-7% of land. However, why species richness varies amongst the Earth's major TRF regions remains poorly understood. Here we investigate the evolutionary processes shaping continental species richness disparities of the pantropical, epiphytic and mostly TRF-dwelling orchid mega-genus Bulbophyllum (c. 1948 spp. in total) using diversification analyses based on a time-calibrated molecular phylogeny (including c. 45-50% spp. each from Madagascar, Africa, Neotropics, and 8.4% from the Asia-Pacific region), coupled with ecological niche modelling (ENM) of geographic distributions under present and past (Last Glacial Maximum; LGM) conditions.
Results: Our results suggest an early-to-late Miocene scenario of 'out-of-Asia-Pacific' origin and progressive, dispersal-mediated diversification in Madagascar, Africa and the Neotropics, respectively. Species richness disparities amongst these four TRF lineages are best explained by a time-for-speciation (i.e. clade age) effect rather than differences in net diversification or diversity-dependent diversification due to present or past spatial-bioclimatic limits. For each well-sampled lineage (Madagascar, Africa, Neotropics), we inferred high rates of speciation and extinction over time (i.e. high species turnover), yet with the origin of most extant species falling into the Quaternary. In contrast to predictions of classical 'glacial refuge' theories, all four lineages experienced dramatic range expansions during the LGM.
Conclusions: As the Madagascan, African and Neotropical lineages display constant-rate evolution since their origin (early-to-mid-Miocene), Quaternary environmental change might be a less important cause of their high species turnover than intrinsic features generally conferring rapid population turnover in tropical orchids (e.g., epiphytism, specialization on pollinators and mycorrhizal fungi, wind dispersal). Nonetheless, climate-induced range fluctuations during the Quaternary could still have played an influential role in the origination and extinction of Bulbophyllum species in those three, if not in all four TRF regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480529 | PMC |
http://dx.doi.org/10.1186/s12862-019-1416-1 | DOI Listing |
PeerJ
January 2025
NICE Planet Uganda Limited, Kampala, Uganda.
Biodiversity is unevenly distributed across the globe. Regional differences in biodiversity impact conservation through the allocation of financial resources, development of infrastructure, and public attention. Such resources are often prioritized to areas that are in more need than others.
View Article and Find Full Text PDFAnim Microbiome
January 2025
Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
The gastrointestinal (GI) microbiota plays a crucial role in host health and disease in dogs, but the knowledge regarding the mucosal associated microbiota along the GI tract is limited in dogs. Therefore, the objective of this study was to characterize the phylogeny and predicted functional capacity of microbiota residing on the gut mucosa across five GI regions of healthy young adult and geriatric dogs fed different diets. Twelve weanling (8 weeks old) and 12 senior (11.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China. Electronic address:
Myostatin (MSTN) is a protein that plays a crucial role in regulating skeletal muscle development. Despite the known benefits of MSTN mutant cattle for increasing beef production, their potential impact on CH emissions has not been quantified. The study comparing wild-type (WT) cattle to MSTN-knockout (MSTN-KO) cattle revealed that CH production was lower.
View Article and Find Full Text PDFPLoS One
January 2025
Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.
Desertification is a major ecological issue worldwide that results in the destruction of terrestrial ecosystems. Restoration of desertified ecosystems has been carried out in recent decades, but the role of soil microorganisms in this process is poorly understood. Thus, to deconstruct the effects of desertified system restoration on soil microbial communities, we examined the changes in soil characteristics as well as the variations in and drivers of soil microbial diversity and community composition of the Hulun Buir Sandy Land in Northeast China, where restoration activities have been performed for approximately 30 years.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Animal Sciences, Central University of Himachal Pradesh, Kangra, 176206, Himachal Pradesh, India.
Environmental factors play a fundamental role in shaping fish assemblage in aquatic ecosystems. The present study describes the fish assemblage structure on the spatial scale in Pong Reservoir, which lies in foothills of the Northwestern Himalaya within the river Beas basin. Through sophisticated enviro assessment techniques, using ArcGIS mapping, this study provides valuable insight into how physicochemical factors shape the fish assemblage in the reservoir.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!