It is well known that wood structural members can stand a relatively heavy load in the short term but will gradually get weaker if the load is applied for a longer period. This phenomenon is caused by the damage accumulation effect in wood and should be appropriately considered during the design of timber structures. Although various formulation methods (also known as classical models) have been proposed to evaluate the damage accumulation effect in wood, the calibration of model parameters is very time-consuming. Our work proposes a novel method to deal with the damage accumulation effect in wood that involves the application of machine learning algorithms. The proposed algorithm considers a multi-objective optimization process with a combination of goodness-of-fit and complexity. Long-term experimental data of typical wood species are used for developing the machine learning based damage accumulation model. Compared with existing pre-formulated models, our model managed to reduce the complexity of the model structure and give sufficiently accurate and unbiased predictions. This study aims to provide a novel tool for evaluating the damage accumulation in wood structural members, and the proposed model can further support the life-cycle performance assessment of timber structures under long-term service scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514856PMC
http://dx.doi.org/10.3390/ma12081243DOI Listing

Publication Analysis

Top Keywords

damage accumulation
24
accumulation wood
20
wood structural
12
structural members
12
machine learning
12
long-term service
8
timber structures
8
wood
7
accumulation
6
damage
5

Similar Publications

Spermidine alleviates copper-induced oxidative stress, inflammation and cuproptosis in the liver.

FASEB J

March 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China.

Copper exposure poses potential detrimental effects on both public and ecosystem health. Spermidine, an antioxidant, has shown promise in reducing oxidative stress and inflammation within the liver. However, its specific role in mitigating copper-induced hepatic cuproptosis and disturbances in copper metabolism remains unexplored.

View Article and Find Full Text PDF

Objective: The study investigated effects of peony callus extracts (PCE) on the protective efficacy against Ultraviolet B (UVB)-induced photoageing, using in vitro and in vivo studies. The research focused on PCE's ability to protect against inflammatory factors, DNA damage and accumulation of senescent cells, along with the evaluation of the extract's potential anti-photoageing benefits to skin.

Methods: Human keratinocyte cell line (HaCaT cells), mast cells and fibroblasts were used to evaluate the role of PCE in anti-photoageing.

View Article and Find Full Text PDF

Background: Benth is commonly utilized in China to take advantage of its purported health benefits.

Methods: Here, the chemical composition, nutritional value, and bioactivity of Benth extract (CGE) are characterized, and the mechanisms through which it functions were explored.

Results: CGE was found to exhibit a favorable nutritional and biosafety profile, especially due to its high amino acid and mineral contents.

View Article and Find Full Text PDF

Chronic treatment with dapsone (DDS) has been linked to adverse reactions involving all organ systems, such as dapsone hypersensitivity syndrome, methemoglobinemia and hemolytic anemia, besides neuroinflammation and neurodegeneration due to iron accumulation and oxidative stress. These effects probably occur due to the presence of its toxic metabolite DDS-NOH, which can generate reactive oxygen species (ROS) and iron overload. In this sense, antioxidant compounds with chelating properties, such as alpha-lipoic acid (ALA), may be an interesting adjuvant therapy strategy in treating or preventing these effects.

View Article and Find Full Text PDF

The Potential Role of Advanced Glycation End Products in the Development of Kidney Disease.

Nutrients

February 2025

Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

Advanced glycation end products (AGEs) represent a class of toxic and irreversible compounds formed through non-enzymatic reactions between proteins or lipids and carbonyl compounds. AGEs can arise endogenously under normal metabolic conditions and in pathological states such as diabetes, kidney disease, and inflammatory disorders. Additionally, they can be obtained exogenously through dietary intake, particularly from foods high in fat or sugar, as well as grilled and processed items.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!