Strigolactones (SLs) have recently been shown to play roles in modulating plant architecture and improving plant tolerance to multiple stresses, but the underlying mechanisms for SLs regulating leaf elongation and the influence by air temperature are still unknown. This study aimed to investigate the effects of SLs on leaf elongation in tall fescue ( , cv. 'Kentucky-31') under different temperature regimes, and to determine the interactions of SLs and auxin in the regulation of leaf growth. Tall fescue plants were treated with GR24 (synthetic analog of SLs), naphthaleneacetic acid (NAA, synthetic analog), or N-1-naphthylphthalamic acid (NPA, auxin transport inhibitor) (individually and combined) under normal temperature (22/18 °C) and high-temperature conditions (35/30 °C) in controlled-environment growth chambers. Exogenous application of GR24 stimulated leaf elongation and mitigated the heat inhibition of leaf growth in tall fescue. GR24-induced leaf elongation was associated with an increase in cell numbers, upregulated expression of cell-cycle-related genes, and downregulated expression of auxin transport-related genes in elongating leaves. The results suggest that SLs enhance leaf elongation by stimulating cell division and interference with auxin transport in tall fescue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515303 | PMC |
http://dx.doi.org/10.3390/ijms20081836 | DOI Listing |
J Fungi (Basel)
December 2024
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Fungal biota represents important constituents of phyllosphere microorganisms. It is taxonomically highly diverse and influences plant physiology, metabolism and health. Members of the order are distributed worldwide and include devastating plant pathogens as well as endophytes and saprophytes.
View Article and Find Full Text PDFAoB Plants
January 2025
INRAE, URP3F, 86600 Lusignan, France.
Perennial grasses' reproductive phenology profoundly impacts plant morphogenesis, biomass production, and perenniality in natural ecosystems and cultivated grasslands. Complex interactions between vegetative and reproductive development complicate grass phenology prediction for various environments and genotypes. This work aims to analyse genetic × environment interactions effects on tiller growth and reproductive development in Three perennial ryegrass cultivars, Bronsyn, Carvalis, and Tryskal, were grown from seedling to heading under four inductive conditions.
View Article and Find Full Text PDFGenes Genomics
January 2025
Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
Background: TCP proteins are plant-specific transcription factors that play essential roles in various developmental processes, including leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, a comprehensive analysis of genome-wide TCP genes and their expression patterns in melon is yet to be done.
Objective: The present study aims to identify and analyze the TCP genes in the melon genome and understand their putative functions.
BMC Genomics
January 2025
Department of Agricultural and Life Industry, Kangwon National University, Chuncheon, 2434, Republic of Korea.
Background: Plant senescence is the process of physiological maturation of plants and is important for crop yield and quality. Senescence is controlled by several factors, such as temperature and photoperiod. However, the molecular basis by which these genes promote senescence in soybeans is not well understood.
View Article and Find Full Text PDFBot Stud
January 2025
Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
Ice plant (Mesembryanthemum crystallinum L.) is a halophyte and an inducible CAM plant. Ice plant seedlings display moderate salt tolerance, with root growth unaffected by 200 mM NaCl treatments, though hypocotyl elongation is hindered in salt-stressed etiolated seedlings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!