Moisture diffusion in carbon fiber composites changes the mechanical properties of the composite. Therefore, a monitoring method of the actual content of moisture in the composite is important. However, at the moment there are no online methods established. A common method is the measurement of the mass changes due to water uptake. This method is not suitable for online monitoring of a real composite part in service. We demonstrate that miniaturized flexible interdigital sensors are suitable for moisture measurement inside the carbon fiber composite. These sensors are directly integrated inside the composite. It was already demonstrated that these can be successfully used for resin-curing monitoring as a primary application. Here we demonstrate that the same sensors are also suitable for moisture measurement inside the material. In order to do so, we expose samples with and without integrated sensors to hot-wet conditions and measure the dielectric changes with the sensors and the mass gain. The moisture concentration and the measured admittance can be directly correlated to each other. This demonstrates that the sensors can be used for moisture measurement as a secondary application. In addition, it is shown that the sensors have the potential to measure the moisture locally inside the material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515565 | PMC |
http://dx.doi.org/10.3390/s19081748 | DOI Listing |
Materials (Basel)
January 2025
Faculty of Mechanical Engineering, Poznan University of Technology, Pl. Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland.
A multilayer structure is a type of construction consisting of outer layers and a core, which is mainly characterized by high strength and specific stiffness, as well as the ability to dampen vibration and sound. This structure combines the high strength of traditional materials (mainly metals) and composites. Currently, sandwich structures in any configurations (types of core) are one of the main directions of technology development and research.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Key Laboratory of Testing Technology for Manufacturing Process of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China.
Materials (Basel)
January 2025
Tickle College of Engineering, University of Tennessee, Knoxville, TN 37996, USA.
Pultruded carbon fiber-reinforced composites are attractive to the wind energy industry due to the rapid production of highly aligned unidirectional composites with enhanced fiber volume fractions and increased specific strength and stiffness. However, high volume carbon fiber manufacturing remains cost-prohibitive. This study investigates the feasibility of a pultruded low-cost textile carbon fiber-reinforced epoxy composite as a promising material in spar cap production was undertaken based on mechanical response to four-point flexure loading.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Non-Ferrous Metals, AGH University of Science and Technology, 30-059 Krakow, Poland.
The aim of this study was to compare the mechanical properties of carbon-fiber-reinforced polymer (CFRP) composites produced using three popular technologies. The tests were performed on composites produced from prepregs in an autoclave, the next variant is composites produced using the infusion method, and the third variant concerns composites produced using the vacuum-assisted hand lay-up method. For each variant, flat plates with dimensions of 1000 mm × 1000 mm were produced while maintaining similar material properties and fabric arrangement configuration.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
This study proposes a two-scale approach to determining the effective thermal conductivity of fibrous composite materials. The analysis was first carried out at the fiber-interphase level to calculate the effective thermal conductivity of this system, and next at the whole composite structure level. At both scales, the system behavior was analyzed using the finite element method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!