Background: This study focuses on the lncRNA XIST (X inactive-specific transcript), an lncRNA involved in multiple human cancers, and investigates the functional significance of XIST and the molecular mechanisms underlying the epithelial-mesenchymal transition (EMT) in pancreatic cancer (PC).
Methods: Clinical specimens from 25 patients as well as 5 human PC cell lines were analyzed for XIST, YAP, and microRNA(miR)-34a by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. To investigate how XIST influences cell proliferation, invasiveness, and apoptosis in PC, we performed the CCK-8 assays, Transwell assays, and flow cytometry. Luciferase reporter assays, qRT-PCR, and Western blot were applied to prove that miR-34a directly binds to XIST.
Results: Up-regulation of XIST and Yes associated protein (YAP) and down-regulation of miR-34a were consistently observed in the clinical specimens and PC cell lines. Silencing XIST reduced the expression of YAP and suppressed transforming growth factor (TGF)-β1-induced EMT, while over-expression of XIST increased the expression of YAP and promoted EMT. In addition, inhibition of epidermal growth factor receptor (EGFR) hampered the XIST-promoted EMT. The results from the luciferase reporter assays confirmed that miR-34a directly targets XIST and suggested that XIST regulates cell proliferation, invasiveness, and apoptosis in PC by sponging miR-34a.
Conclusions: XIST promotes TGF-β1-induced EMT by regulating the miR-34a-YAP-EGFR axis in PC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/bcb-2018-0274 | DOI Listing |
Cell
January 2025
Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA. Electronic address:
Xist RNA initiates X inactivation as it spreads in cis across the chromosome. Here, we reveal a biophysical basis for its cis-limited diffusion. Xist RNA and HNRNPK together drive a liquid-liquid phase separation (LLPS) that encapsulates the chromosome.
View Article and Find Full Text PDFDev Cell
January 2025
King's College London, Centre for Gene Therapy and Regenerative Medicine, School of Basic & Medical Biosciences, Faculty of Life Sciences and Medicine, London, UK; King's College London, Guy's Hospital Assisted Conception Unit, Department of Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, London, UK. Electronic address:
Female primordial germ cells (PGCs) undergo X chromosome reactivation (XCR) during genome-wide reprogramming. XCR kinetics and dynamics are poorly understood at a molecular level. Here, we apply single-cell RNA sequencing and chromatin profiling on germ cells from F mouse embryos, performing a precise appraisal of XCR spanning from migratory-stage PGCs to gonadal germ cells.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
The journal retracts the article titled "Long Coding RNA XIST Contributes to Neuronal Apoptosis through the Downregulation of AKT Phosphorylation and Is Negatively Regulated by miR-494 in Rat Spinal Cord Injury" [...
View Article and Find Full Text PDFImmunol Cell Biol
January 2025
The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
In this Research Highlight, we discuss recent research which shows that TCR-mediated activation and NF-κB signalling play an indispensable role in localising Xist RNA and its interactors to the inactive X chromosome (Xi) in T cells (left and middle). Inhibition of NF-κB disrupts this process, impairing the recruitment of silencing factors and jeopardizing the maintenance of X chromosome inactivation (right).
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
In mammals, X-linked dosage compensation involves two processes: X-chromosome inactivation (XCI) to balance X chromosome dosage between males and females, and hyperactivation of the remaining X chromosome (Xa-hyperactivation) to achieve X-autosome balance in both sexes. Studies of both processes have largely focused on coding genes and have not accounted for transposable elements (TEs) which comprise 50% of the X-chromosome, despite TEs being suspected to have numerous epigenetic functions. This oversight is due in part to the technical challenge of capturing repeat RNAs, bioinformatically aligning them, and determining allelic origin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!