Potassium acts through mTOR to regulate its own secretion.

JCI Insight

Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA.

Published: April 2019

Potassium (K+) secretion by kidney tubule cells is central to electrolyte homeostasis in mammals. In the K+ secretory "principal" cells of the distal nephron, electrogenic Na+ transport by the epithelial sodium channel (ENaC) generates the electrical driving force for K+ transport across the apical membrane. Regulation of this process is attributable in part to aldosterone, which stimulates the gene transcription of the ENaC-regulatory kinase, SGK1. However, a wide range of evidence supports the conclusion that an unidentified aldosterone-independent pathway exists. We show here that in principal cells, K+ itself acts through the type 2 mTOR complex (mTORC2) to activate SGK1, which stimulates ENaC to enhance K+ excretion. The effect depends on changes in K+ concentration on the blood side of the cells, and requires basolateral membrane K+-channel activity. However, it does not depend on changes in aldosterone, or on enhanced distal delivery of Na+ from upstream nephron segments. These data strongly support the idea that K+ is sensed directly by principal cells to stimulate its own secretion by activating the mTORC2-SGK1 signaling module, and stimulate ENaC. We propose that this local effect acts in concert with aldosterone and increased Na+ delivery from upstream nephron segments to sustain K+ homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629116PMC
http://dx.doi.org/10.1172/jci.insight.126910DOI Listing

Publication Analysis

Top Keywords

principal cells
8
upstream nephron
8
nephron segments
8
cells
5
potassium acts
4
acts mtor
4
mtor regulate
4
regulate secretion
4
secretion potassium
4
potassium secretion
4

Similar Publications

Purpose: Fuchs endothelial corneal dystrophy (FECD) displays a higher incidence in females than in males, yet the underlying mechanism remains unclear. This study aimed to elucidate sex-dependent differential gene expressions in corneal endothelial cells (CECs) from healthy non-FECD individuals and from patients with FECD.

Methods: RNA-Seq data from CECs of non-FECD subjects (3 males, 4 females) and FECD subjects (5 males, 5 females) were analyzed to identify differentially expressed genes (DEGs) between the sexes.

View Article and Find Full Text PDF

Immune Cells and Intracerebral Hemorrhage: A Causal Investigation Through Mendelian Randomization.

Brain Behav

January 2025

Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.

Background: The involvement of immune cells in the pathophysiology of intracerebral hemorrhage (ICH) is becoming increasingly recognized, yet their specific causal contributions remain uncertain. The objective of this research is to uncover the potential causal interactions between diverse immune cells and ICH using Mendelian randomization (MR) analysis.

Methods: Genetic variants associated with 731 immune cell traits were sourced from a comprehensive genome-wide association study (GWAS) involving 3757 participants.

View Article and Find Full Text PDF

A novel approach to the prevention and management of chemotherapy-induced cardiotoxicity: PANoptosis.

Chem Biol Interact

January 2025

Department of Cardiology, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang 310007, China; Zhejiang Key Laboratory of Integrative Chinese and Western Medicine for Diagnosis and Treatment of Circulatory Diseases, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang 310007, China; Zhejiang Engineering Research Center for Precise Diagnosis and Innovative Traditional Chinese Medicine for Cardiovascular Diseases, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang 310007, China. Electronic address:

As a fundamental component of antitumor therapy, chemotherapy-induced cardiotoxicity (CIC) has emerged as a leading cause of long-term mortality in patients with malignant tumors. Unfortunately, there are currently no effective therapeutic preventive or treatment strategies, and the underlying pathophysiological mechanisms of CIC remain inadequately understood. A growing number of studies have shown that different mechanisms of cell death, such as apoptosis, pyroptosis, and necroptosis, are essential for facilitating the cardiotoxic effects of chemotherapy.

View Article and Find Full Text PDF

Acanthoside B attenuates NLRP3-mediated pyroptosis and ulcerative colitis through inhibition of tAGE/RAGE pathway.

Allergol Immunopathol (Madr)

January 2025

Department of Neurofunction, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China;

Acanthoside B (Aca.B), a principal bioactive compound extracted from , exhibits superior anti-inflammatory capacity. Ulcerative colitis is a nonspecific inflammatory bowel disease with unknown etiology.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.

Background: Autosomal dominant Alzheimer disease (ADAD) is characterized by genetic mutations affecting the beta-amyloid (Aβ) pathway. However, vascular and immune factors play important roles which are not completely understood. Understanding the function of the neurovascular unit (NVU) comprised of neurons, glial cells, and vasculature, at different disease stages appears ideal to developing and evaluating therapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!