Novel pyridine- and pyrimidine-based allosteric inhibitors are reported that achieve PDE4D subtype selectivity through recognition of a single amino acid difference on a key regulatory domain, known as UCR2, that opens and closes over the catalytic site for cAMP hydrolysis. The design and optimization of lead compounds was based on iterative analysis of X-ray crystal structures combined with metabolite identification. Selectivity for the activated, dimeric form of PDE4D provided potent memory enhancing effects in a mouse model of novel object recognition with improved tolerability and reduced vascular toxicity over earlier PDE4 inhibitors that lack subtype selectivity. The lead compound, 28 (BPN14770), has entered midstage, human phase 2 clinical trials for the treatment of Fragile X Syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7444661 | PMC |
http://dx.doi.org/10.1021/acs.jmedchem.9b00193 | DOI Listing |
Int J Mol Sci
January 2025
Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
Cenobamate is a new and highly effective antiseizure compound used for the treatment of adults with focal onset seizures and particularly for epilepsy resistant to other antiepileptic drugs. It acts on multiple targets, as it is a positive allosteric activator of γ-aminobutyric acid type A (GABA) receptors and an inhibitor of neuronal sodium channels, particularly of the late or persistent Na current. We recently evidenced the inhibitory effects of cenobamate on the peak and late current component of the human cardiac isoform hNav1.
View Article and Find Full Text PDFMolecules
December 2024
School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, China.
The src-homology 2 domain-containing phosphatase 2 (SHP2) is a human cytoplasmic protein tyrosine phosphatase that plays a crucial role in cellular signal transduction. Aberrant activation and mutations of SHP2 are associated with tumor growth and immune suppression, thus making it a potential target for cancer therapy. Initially, researchers sought to develop inhibitors targeting SHP2's catalytic site (protein tyrosine phosphatase domain, PTP).
View Article and Find Full Text PDFEur J Cancer
November 2024
David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
Purpose: MAK683, a first-in-class and highly selective allosteric inhibitor of the embryonic ectoderm development subunit of polycomb repressive complex 2, has shown sustained antitumor activity in tumor xenograft models. This first-in-human phase 1/2 study evaluated the safety, pharmacokinetics (PK), and clinical activity of single-agent MAK683 in advanced malignancies.
Methods: MAK683 was administered fasted once daily or twice daily continuously in 28-day treatment cycles.
J Chem Inf Model
January 2025
Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States.
mTOR plays a crucial role in PI3K/AKT/mTOR signaling. We hypothesized that mTOR activation mechanisms driving oncogenesis can advise effective therapeutic designs. To test this, we combined cancer genomic analysis with extensive molecular dynamics simulations of mTOR oncogenic variants.
View Article and Find Full Text PDFBiochemistry
January 2025
National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States.
SARS-CoV-2 infections led to a worldwide pandemic in 2020. As of 2024, therapeutics against SARS-CoV-2 have continued to be desirable. NSP14 is a dual-function methyltransferase (MTase) and exonuclease (ExoN) with key roles in SARS-CoV-2 genome propagation and host immune system evasion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!