The aim of this study was to explore how the toxic trans-crotonaldehyde (TCA) in mitochondria or aldehyde dehydrogenase (ALDH) at different pHs was intercepted by oxyresveratrol (Oxy-Res) contributing to anticancer. Ultraviolet-visible (UV-vis) spectroscopy and Raman spectroscopy were employed. UV-vis spectra showed that the Oxy-Res red shifted the peak of the toxic TCA from 316 nm to 325 nm, while the peaks of the Oxy-Res shifted from 329 nm with 290 nm and 300 nm to 325 nm with 303 nm. In the mitochondria, the Oxy-Res blue shifted the peaks of the toxic TCA from 325 nm with 303 nm to 321 nm with 301 nm. Raman spectra revealed that the Oxy-Res caused shifting of the CHO of the toxic TCA from 1,689 cm to 1,671 cm with band decline. The CC of the toxic TCA at 1641 cm was split into 1,639 cm and 1,642 cm with band decline. The bands of the Oxy-Res at 1634 cm , 1,617 cm , and 1,595 cm disappeared. In the mitochondria, the CC of the toxic TCA at 1641 cm splitting disappeared. In ALDH, with the decrease of pH from 7.8 to 6.5, the CHO of the toxic TCA did not red shift from 1,689 cm to 1,674 cm up to pH 6.5. There was no change in the CC of the toxic TCA at 1640 cm in ALDH at different pHs. The conclusion of the study was that the CHO of the toxic TCA was intercepted by the Oxy-Res under the action of ALDH in the mitochondria, particularly at pH 7.8. © 2019 IUBMB Life, 2019.

Download full-text PDF

Source
http://dx.doi.org/10.1002/iub.2051DOI Listing

Publication Analysis

Top Keywords

toxic tca
32
cho toxic
12
cc toxic
12
toxic
10
tca
9
toxic trans-crotonaldehyde
8
intercepted oxyresveratrol
8
contributing anticancer
8
aldh phs
8
325 nm 303 nm
8

Similar Publications

The intervention of B. longum metabolites in Fnevs' carcinogenic capacity: A potential double-edged sword.

Exp Cell Res

January 2025

Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China. Electronic address:

Colorectal cancer (CRC) ranks among the most prevalent malignant tumors globally. Fusobacterium nucleatum and its metabolites are effective biological targets for colon cancer promotion. Probiotics such as Bifidobacterium can block the occurrence and development of CRC by regulating the host intestinal mucosal immunity, eliminating carcinogens, and interfering with tumor cell proliferation and apoptosis.

View Article and Find Full Text PDF

Plants encounter various environmental stresses throughout development, including shade, high light, drought, hypoxia, extreme temperatures, and metal toxicity, all of which adversely affect growth and productivity. Organic acids (OAs), besides serving as intermediates in the tricarboxylic acid (TCA) cycle, play crucial roles in multiple metabolic pathways and cellular compartments, including mitochondrial metabolism, amino acid metabolism, the glyoxylate cycle, and the photosynthetic mechanisms of C4 and CAM plants. OAs contribute to stress tolerance by acting as root chelating agents, regulating ATP production, and providing reducing power for detoxifying reactive oxygen species (ROS).

View Article and Find Full Text PDF

Defining serine tRNA knockout as a strategy for effective repression of gene expression in organisms with a recoded genome.

Nucleic Acids Res

January 2025

Division of Pharmacoengineering and Molecular Pharmaceutics, The University of North Carolina at Chapel Hill, 125 Mason Farm Rd. Chapel Hill, NC 27599, USA.

Whole genome codon compression-the reassignment of all instances of a specific codon to synonymous codons-can generate organisms capable of tolerating knockout of otherwise essential transfer RNAs (tRNAs). As a result, such knockout strains enable numerous unique applications, such as high-efficiency production of DNA encoding extremely toxic genes or non-canonical proteins. However, achieving stringent control over protein expression in these organisms remains challenging, particularly with proteins where incomplete repression results in deleterious phenotypes.

View Article and Find Full Text PDF

Background: Epidemiological studies report associations of drinking water disinfection byproducts (DBPs) with adverse health outcomes, including birth defects. Here, we used a rat model susceptible to pregnancy loss (full-litter resorption; FLR) and eye malformations (anophthalmia, microphthalmia) to test 11 DBPs, including trihalomethanes, haloacetic acids (HAAs), and nitrogen-containing DBPs (N-DBPs).

Methods: Timed-pregnant F344 rats received gavage doses of chloroform, chlorodibromomethane, iodoform, chloroacetic acid, bromoacetic acid, dibromoacetic acid (DBA), diiodoacetic acid (DIA), trichloroacetic acid (TCA), dibromonitromethane, and iodoacetonitrile on gestation days (GD) 6-10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!