Probing eumelanin photoprotection using a catechol:quinone heterodimer model system.

Faraday Discuss

Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.

Published: July 2019

Eumelanin is a natural pigment with photoprotective and radical scavenging characteristics, which are vital for a multitude of living organisms. However, the molecular mechanisms behind these functions remain obscure, in part because eumelanin is a heterogeneous polymer composed of a complex assortment of structural and chemical domains. Despite uncertainty about its precise structure, the functional units of eumelanin are thought to include quinones in various oxidation states. Here, we investigate the photochemistry of a catechol : o-quinone heterodimer as a model system for uncovering the photoprotective roots of eumelanin. Ultrafast transient absorption measurements in the UV to near-IR spectral regions are used to identify the photochemical processes that follow selective excitation of the o-quinone in the heterodimer using 395 nm light. We find that both singlet and triplet o-quinone excited states induce hydrogen atom transfer from the catechol, forming semiquinone radical pairs that persist beyond 2.5 ns, which is the upper time limit accessible by our instrument. Furthermore, the hydrogen atom transfer reaction was found to occur 1000 times faster via the singlet channel. Excited state pathways such as these may be important in eumelanin, where similar hydrogen-bonded interfaces are believed to exist between catechol and o-quinone functional groups.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8fd00231bDOI Listing

Publication Analysis

Top Keywords

heterodimer model
8
model system
8
hydrogen atom
8
atom transfer
8
eumelanin
5
probing eumelanin
4
eumelanin photoprotection
4
photoprotection catecholquinone
4
catecholquinone heterodimer
4
system eumelanin
4

Similar Publications

Background: Eukaryotic RNA polymerase I consists of 12 or 11 core subunits and three dissociable subunits, Rrn3, A34, and A49. The A34 and A49 subunits exist as a heterodimer. In silico analysis of the A34 family of transcription factors demonstrates a commonly shared domain structure despite a lack of sequence conservation, as well as N-terminal and C-terminal disordered regions.

View Article and Find Full Text PDF

The cytoskeleton, composed of microtubules, intermediate filaments and actin filaments is vital for various cellular functions, particularly within the nervous system, where microtubules play a key role in intracellular transport, cell morphology, and synaptic plasticity. Tubulin-specific chaperones, including tubulin folding cofactors (TBCA, TBCB, TBCC, TBCD, TBCE), assist in the proper formation of α/β-tubulin heterodimers, essential for microtubule stability. Pathogenic variants in these chaperone-encoding genes, especially TBCD, have been linked to Progressive Encephalopathy with Brain Atrophy and Thin Corpus Callosum (PEBAT, OMIM #604,649), a severe neurodevelopmental disorder.

View Article and Find Full Text PDF

Context: Despite a growing number of studies, the genetic etiology in many cases of ovarian dysgenesis is incompletely understood.

Objectives: This work aimed to study the genetic etiology causing absence of spontaneous pubertal development, hypergonadotropic hypogonadism, and primary amenorrhea in 2 sisters.

Methods: Whole-exome sequencing was performed on DNA extracted from peripheral lymphocytes of 2 Palestinian sisters born to consanguineous parents.

View Article and Find Full Text PDF

Contact hypersensitivity (CHS) and atopic dermatitis (AD) are pervasive inflammatory skin diseases with similar symptoms, and the global prevalence of both conditions is steadily rising. Many compounds and biotics have been developed to target molecules critical to the etiology or pathogenesis of CHS and AD. However, such molecules are sometimes ineffective or lose potency over the therapeutic course.

View Article and Find Full Text PDF

Many proteins form paralogous multimers-molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here, we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), an αβ heterotetramer that evolved from a homodimeric ancestor after a gene duplication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!