Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heterogeneous materials such as rocks, concrete, and granular materials exhibit a strong elastic nonlinearity. The sensitivity of the elastic nonlinearity to the applied stress and pore pressure in principle allows the use of seismic waves for remote observations of stress or pore pressure changes. Yet the nonlinearity of rocks is difficult to quantify in situ as active deformation tests are not possible in the field. We investigate the elastic nonlinearity in a fully natural experiment using the ambient seismic noise of a single seismic station to sense changes of the seismic velocity in the subsurface reaching 0.026% in response to the minute deformation caused by various constituents of the tidal forces exerted by the Sun and Moon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.122.138501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!