We explore the physics potential of using precision timing information at the LHC in searches for long-lived particles (LLPs). In comparison with the light standard model particles, the decay products of massive LLPs arrive at detectors with time delays around the nanosecond scale. We propose new strategies to take advantage of this time delay feature by using initial state radiation to time stamp the collision event and require at least one LLP to decay within the detector. This search strategy is effective for a broad range of models. In addition to outlining this general approach, we demonstrate its effectiveness with the projected reach for two benchmark scenarios: a Higgs boson decaying into a pair of LLPs, and pair production of long-lived neutralinos in the gauge mediated supersymmetry breaking models. Our strategy increases the sensitivity to the lifetime of the LLP by two orders of magnitude or more and particularly exhibits a better behavior with a linear dependence on the lifetime in the large lifetime region compared to traditional LLP searches. The timing information significantly reduces the standard model background and provides a powerful new dimension for LLP searches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.122.131801 | DOI Listing |
Proc Jpn Acad Ser B Phys Biol Sci
December 2024
Department of Physics, The University of Tokyo, Tokyo, Japan.
Λ = Λ(1405) plays an essential role in the formation of kaonic nuclear clusters (KNC). The simplest KNC, Kpp, has the structure Λp = (Kp)p, in which a real kaon migrates between two nucleons, mediating super-strong Λp attraction. Production data of Kpp have been accumulated by DISTO, J-PARC E27 and J-PARC E15 experiments.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
A key challenge in vaccine development is to induce an effective and durable immune response. Live virus vaccines induce lifelong antibody responses; however, the immune responses induced by inactivated or subunit vaccines decrease gradually. Activation of the germinal center (GC) reaction, which generates long-lived plasma cells (LLPCs), is a key mediator of long-term antibody responses.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.
Nature
November 2024
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
Quantum computation and simulation rely on long-lived qubits with controllable interactions. Trapped polar molecules have been proposed as a promising quantum computing platform, offering scalability and single-particle addressability while still leveraging inherent complexity and strong couplings of molecules. Recent progress in the single quantum state preparation and coherence of the hyperfine-rotational states of individually trapped molecules allows them to serve as promising qubits, with intermolecular dipolar interactions creating entanglement.
View Article and Find Full Text PDFNature
November 2024
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!