Insulin analogues, mainstays in the modern treatment of diabetes mellitus, exemplify the utility of protein engineering in molecular pharmacology. Whereas chemical syntheses of the individual A and B chains were accomplished in the early 1960s, their combination to form native insulin remains inefficient because of competing disulfide pairing and aggregation. To overcome these limitations, we envisioned an alternative approach: pairwise substitution of cysteine residues with selenocysteine (Sec, U). To this end, Cys and Cys (which form the internal intrachain A6-A11 disulfide bridge) were each replaced with Sec. The A chain[C6U, C11U] variant was prepared by solid-phase peptide synthesis; while sulfitolysis of biosynthetic human insulin provided wild-type B chain-di-S-sulfonate. The presence of selenium atoms at these sites markedly enhanced the rate and fidelity of chain combination, thus solving a long-standing challenge in chemical insulin synthesis. The affinity of the Se-insulin analogue for the lectin-purified insulin receptor was indistinguishable from that of WT-insulin. Remarkably, the thermodynamic stability of the analogue at 25 °C, as inferred from guanidine denaturation studies, was augmented (ΔΔG ≈0.8 kcal mol ). In accordance with such enhanced stability, reductive unfolding of the Se-insulin analogue and resistance to enzymatic cleavage by Glu-C protease occurred four times more slowly than that of WT-insulin. 2D-NMR and X-ray crystallographic studies demonstrated a native-like three-dimensional structure in which the diselenide bridge was accommodated in the hydrophobic core without steric clash.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861001PMC
http://dx.doi.org/10.1002/chem.201900892DOI Listing

Publication Analysis

Top Keywords

disulfide bridge
8
human insulin
8
se-insulin analogue
8
insulin
6
substitution internal
4
internal disulfide
4
bridge diselenide
4
diselenide enhances
4
enhances foldability
4
foldability stability
4

Similar Publications

Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy.

Nat Commun

January 2025

Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium.

The SARS-CoV-2 spike protein's membrane-binding domain bridges the viral and host cell membrane, a critical step in triggering membrane fusion. Here, we investigate how the SARS-CoV-2 spike protein interacts with host cell membranes, focusing on a membrane-binding peptide (MBP) located near the TMPRSS2 cleavage site. Through in vitro and computational studies, we examine both primed (TMPRSS2-cleaved) and unprimed versions of the MBP, as well as the influence of its conserved disulfide bridge on membrane binding.

View Article and Find Full Text PDF

Heme is involved in many critical processes in pathogenic bacteria as iron acquisition by these microorganisms is achieved by either direct uptake of heme or use of heme-binding proteins called hemophores. Exploring the underlying mechanisms on a molecular level can open new avenues in understanding the host-pathogen interactions. Any imbalance of the heme concentration has a direct impact on the bacterial growth and survival.

View Article and Find Full Text PDF

Structure-based design of covalent nanobody binders for a thermostable green fluorescence protein.

Acta Biochim Biophys Sin (Shanghai)

December 2024

Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.

The use of green fluorescence protein (GFP) has advanced numerous areas of life sciences. An ultra-thermostable GFP (TGP), engineered from a coral GFP, offers potential advantages over traditional jellyfish-derived GFP because of its high stability. However, owing to its later discovery, TGP lacks the extensive toolsets available for GFP, such as heavy chain-only antibody binders known as nanobodies.

View Article and Find Full Text PDF

Protein biomarker discovery in human biological fluids has greatly developed over the past two decades thanks to technological advances allowing deeper proteome coverage and higher sample throughput, among others. While blood samples are most commonly investigated due to their moderate ease of collection and high information content, other biological fluids such as cerebrospinal fluid (CSF) and urine are highly relevant for specific pathologies, such as brain and urologic diseases, respectively. Independently of the biofluid of interest, platforms that can robustly handle a large number of samples are essential in the discovery phase of a clinical study.

View Article and Find Full Text PDF

Cytochrome bd from Mycobacterium tuberculosis (Mtbd) is a menaquinol oxidase that has gained interest as an antibiotic target due to its importance in survival under infectious conditions. Mtbd contains a characteristic disulfide bond that has been hypothesized to allow for Mtbd activity regulation at the enzymatic level, possibly helping M. tuberculosis to rapidly adapt to the hostile environment of the phagosome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!