Aims: Secretory carcinoma of the breast (SCB) is a rare histological type of breast carcinoma with a generally indolent clinical behaviour. We aim to elucidate the clinical, pathological and molecular findings of SCB cases and identify characteristics associated with aggressive clinical courses.

Methods And Results: Fourteen patients with SCB were identified, including 12 women and two men, with a median age of 56 years (range = 8-81 years). Clinical data, histological diagnosis, molecular findings and follow-up were reviewed. Eight patients presented with palpable masses and four patients with radiographic abnormalities. All cases were unilateral. Surgical procedures included excisional biopsies and ipsilateral mastectomies. In 10 cases, oestrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) results were obtained, with six cases positive for ER and three positive for PR. All cases lacked HER2 overexpression. Sentinel lymph node biopsy was performed in 10 cases, and two patients had axillary lymph node metastasis. Follow-up ranged from 21 to 212 months (median = 70 months). Two patients developed distant metastasis of SCB. Molecular analysis of these aggressive tumours revealed amplification of the 16p13.3 locus, a TERT promotor mutation and loss of 9p21.3 locus. Review of the literature for SCB cases with distant metastasis was performed.

Conclusions: Although SCBs are generally associated with a favourable prognosis, our study and review demonstrate that a subset of SCBs may develop distant metastases. Further studies are warranted to identify markers predictive of more aggressive clinical behaviour in this rare breast cancer subtype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646069PMC
http://dx.doi.org/10.1111/his.13879DOI Listing

Publication Analysis

Top Keywords

secretory carcinoma
8
carcinoma breast
8
cases
8
clinical behaviour
8
molecular findings
8
scb cases
8
aggressive clinical
8
lymph node
8
distant metastasis
8
scb
5

Similar Publications

Classification of Breast Cancer Through the Perspective of Cell Identity Models.

Adv Exp Med Biol

January 2025

INSERM, Bergonie Cancer Institute, University of Bordeaux, Bordeaux, France.

The mammary epithelium has an inner luminal layer that contains estrogen receptor (ER)-positive hormone-sensing cells and ER-negative alveolar/secretory cells, and an outer basal layer that contains myoepithelial/stem cells. Most human tumours resemble either hormone-sensing cells or alveolar/secretory cells. The most widely used molecular classification, the Intrinsic classification, assigns hormone-sensing tumours to Luminal A/B and human epidermal growth factor 2-enriched (HER2E)/molecular apocrine (MA)/luminal androgen receptor (LAR)-positive classes, and alveolar/secretory tumours to the Basal-like class.

View Article and Find Full Text PDF

Circulating Adenoid Cystic Carcinoma associated MYB transcripts enable rapid and sensitive detection of metastatic disease in blood liquid biopsies.

J Liq Biopsy

December 2024

Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.

Adenoid cystic carcinoma (ACC) is a rare and lethal malignancy that originates in secretory glands of the head and neck. A prominent molecular feature of ACC is the overexpression of the proto-oncogene MYB. ACC has a poor long-term survival due to its high propensity for recurrence and protracted metastasis.

View Article and Find Full Text PDF

Background: The early stages of tumor bone metastasis are closely associated with changes in the vascular niche of the bone microenvironment, and abnormal angiogenesis accelerates tumor metastasis and progression. However, the effects of lung adenocarcinoma (LUAD) cells reprogrammed by the bone microenvironment on the vascular niche within the bone microenvironment and the underlying mechanisms remain unclear. This study investigates the effects and mechanisms of LUAD cells reprogrammed by the bone microenvironment on endothelial cells and angiogenesis, providing insights into the influence of tumor cells on the vascular niche within the bone microenvironment.

View Article and Find Full Text PDF

Exposure to ionizing radiation (IR), both low-LET (e.g., X-rays, γ rays) and high-LET (e.

View Article and Find Full Text PDF

The anti-tumor effect of the IFNγ/Fas chimera expressed on CT26 tumor cells.

Anim Cells Syst (Seoul)

January 2025

Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea.

Interferon gamma (IFNγ) is well-known for its ability to stimulate immune cells in response to pathogen infections and cancer. To develop an effective cancer therapeutic vaccine, CT26 colon carcinoma cells were genetically modified to express IFNγ either as a secreted form (sIFNγ) or as a membrane-bound form. For the membrane-bound expression, IFNγ was fused with Fas (mbIFNγ/Fas), incorporating the extracellular cysteine-rich domains, transmembrane, and cytoplasmic domains of Fas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!