General model for depth-resolved estimation of the optical attenuation coefficients in optical coherence tomography.

J Biophotonics

Universidade de Sao Paulo USP - IPEN - CNEN/SP, Instituto de Pesquisas Energeticas e Nucleares, São Paulo, Brazil.

Published: October 2019

We present the proof of concept of a general model that uses the tissue sample transmittance as input to estimate the depth-resolved attenuation coefficient of tissue samples using optical coherence tomography (OCT). This method allows us to obtain an image of tissue optical properties instead of intensity contrast, guiding diagnosis and tissues differentiation, extending its application from thick to thin samples. The performance of our method was simulated and tested with the assistance of a home built single-layered and multilayered phantoms (~100 μm each layer) with known attenuation coefficient on the range of 0.9 to 2.32 mm . It is shown that the estimated depth-resolved attenuation coefficient recovers the reference values, measured by using an integrating sphere followed by the inverse adding doubling processing technique. That was corroborated for all situations when the correct transmittance value is used with an average difference of 7%. Finally, we applied the proposed method to estimate the depth-resolved attenuation coefficient for a thin biological sample, demonstrating the ability of our method on real OCT images.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.201800402DOI Listing

Publication Analysis

Top Keywords

attenuation coefficient
16
depth-resolved attenuation
12
general model
8
optical coherence
8
coherence tomography
8
estimate depth-resolved
8
attenuation
5
depth-resolved
4
model depth-resolved
4
depth-resolved estimation
4

Similar Publications

Objectives: The pelvic floor muscle (PFM) plays a major role in sexual and urinary functions. No objective method exists to measure the PFM in male. This study evaluated the reliability of male PFM volume using three-dimensional computed tomography (3D-CT).

View Article and Find Full Text PDF

Glass system of 45BO-20ZnO-30BaO-5X, (where X represents CaO, MgO, AlO, TiO, CuO and FeO) in mole percentage was investigated for gamma ray radiation shielding experimentally. Six glass composites were fabricated and the density was measured experimentally and the BZBCa glass sample has the least density with a value of 3.932 g cm and this is due to the presence of CaO in it, and the sample BZBFe has the highest density with a value of 4.

View Article and Find Full Text PDF

Exposure to mid-energy radiation poses significant health risks, necessitating the development of effective shielding materials. Traditional lead-based shields, while effective, have significant drawbacks including toxicity and environmental concerns. This study investigates the potential of lead-free epoxy resin nanocomposites, incorporating bismuth oxide, nickel oxide, and cerium oxide, for mid-energy radiation protection.

View Article and Find Full Text PDF

Measurement and Analysis of Optical Transmission Characteristics of the Human Skull.

J Biophotonics

January 2025

Department of Emergency, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.

The brain, as a vital part of central nervous system, receives approximately 25% of body's blood supply, making accurate monitoring of cerebral blood flow essential. While fNIRS is widely used for measuring brain physiology, complex tissue structure affects light intensity, spot size, and detection accuracy. Many studies rely on simulations with limited experimental validation.

View Article and Find Full Text PDF

Achieving High-Precision Attenuation Coefficient Measurement in Optical Coherence Tomography.

J Biophotonics

January 2025

Department of Biomedical Engineering and Physics, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands.

In this study, we aim to validate the analytical Cramer-Rao lower bound (CRLB) equation for determining attenuation coefficients using a 1310 nm Optical Coherence Tomography (OCT) system. Our experimental results successfully confirm the validity of the equation, achieving unprecedented precision with a standard deviation below 0.01 mm for intralipid samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!