Central nervous system is sensitive and vulnerable to microwave radiation. Numerous studies have reported that microwave could damage cognitive functions, such as impairment of learning and memory ability. However, the biological effects and mechanisms of accumulative microwave radiation on cognitive functions were remained unexplored. In this study, we analyzed differential expressed proteins in rat models of microwave-induced cognitive impairment by iTRAQ high-resolution proteomic method. Rats were exposed to 2.856 GHz microwave (S band), followed by 1.5 GHz microwave exposure (L band) both at an average power density of 10 mW/cm (SL10 group). Sham-exposed (control group), 2.856 GHz microwave-exposed (S10 group), or 1.5 GHz microwave-exposed (L10 group) rats were used as controls. Hippocampus was isolated, and total proteins were extracted at 7 days after exposure, for screening differential expressed proteins. We found that accumulative microwave exposure induced 391 differential expressed proteins, including 9 downregulated and 382 upregulated proteins. The results of GO analysis suggested that the biological processes of these proteins were related to the adhesion, translation, brain development, learning and memory, neurogenesis, and so on. The cellular components mainly focused on the extracellular exosome, membrane, and mitochondria. The molecular function contained the protein complex binding, protein binding, and ubiquitin-protein transferase activity. And, the KEGG pathways mainly included the synaptic vesicle cycle, long-term potentiation, long-term depression, glutamatergic synapse, and calcium signaling pathways. Importantly, accumulative exposure (SL10 group) caused more differential expressed proteins than single exposure (S10 group or L10 group). In conclusion, 10 mW/cm S or L band microwave induced numerous differential expressed proteins in the hippocampus, while accumulative exposure evoked strongest responses. These proteins were closely associated with cognitive functions and were sensitive to microwave.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-04873-0 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt.
Mycobacterium tuberculosis (Mtb) complex, responsible for tuberculosis (TB) infection, continues to be a predominant global cause of mortality due to intricate host-pathogen interactions that affect disease progression. MicroRNAs (miRNAs), essential posttranscriptional regulators, have become pivotal modulators of these relationships. Recent findings indicate that miRNAs actively regulate immunological responses to Mtb complex by modulating autophagy, apoptosis, and immune cell activities.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, 310012, China.
In the present study, we identified 22 significant SNPs, eight stable QTLs and 17 potential candidate genes associated with 100-seed weight in soybean. Soybean is an economically important crop that is rich in seed oil and protein. The 100-seed weight (HSW) is a crucial yield contributing trait.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, China.
Hair follicle (HF) development and pigmentation are complex processes governed by various signaling pathways, such as TGF-β and FGF signaling pathways. Nestin + (neural crest like) stem cells are also expressed in HF stem cells, particularly in the bulge and dermal papilla region. However, the specific role and differentiation potential of these Nestin-positive cells within the HF remain unclear, especially regarding their contribution to melanocyte formation and hair pigmentation.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India.
MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Türkiye.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!