Trifluoromethylation-triggered cyclization of alkenes provides a useful route to CF3-containing cyclic compounds. Current approaches to generate CF3-based initiators from a CF3 source require a catalyst or an activator. This work describes a catalyst-free protocol to innately produce electrophilic CF3 species from PhICF3Cl for trifluoromethylative cyclization of acryloanilides. A new domino biscyclization of dienes has been developed leading to trifluoroethylated tetrahydroindenoquinolinones with chemo- and stereo-selectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9ob00601j | DOI Listing |
J Org Chem
January 2025
College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, China.
A novel metal- and azide-free methodology for the synthesis of trifluoromethylated 1,2,3-triazoles from arylamines with a new 3-bromo-1,1,1-trifluoropropan-2-one derived tosylhydrazone has been developed under mild reaction conditions. The new α-bromo-trifluoromethylated tosylhydrazone reagent was operationally safe and bench-stable from low-cost and readily commercially available starting materials in the iodine-promoted aerobic oxidative cycloaddition reaction with arylamines, affording a variety of trifluoromethylated 1,2,3-triazoles in good to excellent yields.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
A highly efficient base-controlled synthesis of -β-trifluoromethyl-substituted 2-benzo[]imidazole-2-thiones and 2-fluoro-4-benzo[4,5]imidazo[2,1-][1,3]thiazines hydroamination or defluorinative cyclizations of α-(trifluoromethyl)styrenes with 2-mercaptobenzimidazole was developed.
View Article and Find Full Text PDFChemistry
December 2024
Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
Polyaromatics, as the assembly of diverse cyclic π-systems, exhibit unique physicochemical properties when compared to their individual constituents. In this study, we developed a strategic connection of two azacycles via a furan bridge through a defluorinative diazolation-cyclization reaction of trifluoromethyl enones and N-heterocycles. A range of modular 2,4-furan-bridged triheterocycles (FBTHs), featuring a C3-trifluoromethyl group, was synthesized with broad substrate scope and good regioselectivity under transition metal-free conditions.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
An efficient protocol was reported for the synthesis of 2-trifluoromethyl indoles through visible-light-promoted intermolecular cyclization of sulfoxonium ylides with azides, without the need for external photocatalysts, transition metals, or bases. The formation of 2-trifluoromethyl indoles involves an intriguing cascade process including azide rearrangement, intermolecular nucleophilic addition, and visible-light-promoted cyclization of a key intermediate. The protocol features high efficiency, mild conditions, excellent substrate compatibility and good regioselectivity.
View Article and Find Full Text PDFJ Org Chem
December 2024
College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China.
A visible-light-induced cascade radical trifluoromethylation/cyclization/dearomatization reaction between isocyanide-containing indoles and CFBr has been developed to afford trifluoromethylated spiro[indole-3,3-quinoline] and spiro [indole-3,3-pyrrole] derivatives in good yields. The utility of the process is demonstrated by a scale-up experiment. The mechanism was proposed based on the control experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!