AI Article Synopsis

  • This study investigates how radiomic features from MRI can predict overall survival in patients with soft tissue sarcomas (STS).
  • It analyzes two groups of patients, extracting 30 radiomic features from MR images and comparing the effectiveness of clinical-only, radiomics-only, and combined clinical and radiomics models.
  • Findings indicate that combining radiomic features with clinical data improves the ability to predict patient survival, suggesting that this approach could enhance personalized treatment strategies for STS.

Article Abstract

Purpose: Soft tissue sarcomas (STS) represent a heterogeneous group of diseases, and selection of individualized treatments remains a challenge. The goal of this study was to determine whether radiomic features extracted from magnetic resonance (MR) images are independently associated with overall survival (OS) in STS.

Methods And Materials: This study analyzed 2 independent cohorts of adult patients with stage II-III STS treated at center 1 (N = 165) and center 2 (N = 61). Thirty radiomic features were extracted from pretreatment T1-weighted contrast-enhanced MR images. Prognostic models for OS were derived on the center 1 cohort and validated on the center 2 cohort. Clinical-only (C), radiomics-only (R), and clinical and radiomics (C+R) penalized Cox models were constructed. Model performance was assessed using Harrell's concordance index.

Results: In the R model, tumor volume (hazard ratio [HR], 1.5) and 4 texture features (HR, 1.1-1.5) were selected. In the C+R model, both age (HR, 1.4) and grade (HR, 1.7) were selected along with 5 radiomic features. The adjusted c-indices of the 3 models ranged from 0.68 (C) to 0.74 (C+R) in the derivation cohort and 0.68 (R) to 0.78 (C+R) in the validation cohort. The radiomic features were independently associated with OS in the validation cohort after accounting for age and grade (HR, 2.4;  = .009).

Conclusions: This study found that radiomic features extracted from MR images are independently associated with OS when accounting for age and tumor grade. The overall predictive performance of 3-year OS using a model based on clinical and radiomic features was replicated in an independent cohort. Optimal models using clinical and radiomic features could improve personalized selection of therapy in patients with STS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6460235PMC
http://dx.doi.org/10.1016/j.adro.2019.02.003DOI Listing

Publication Analysis

Top Keywords

radiomic features
32
independently associated
16
features extracted
12
features
9
features independently
8
associated survival
8
soft tissue
8
images independently
8
center cohort
8
age grade
8

Similar Publications

Challenges in clinical translation of cardiac magnetic resonance imaging radiomics in non-ischemic cardiomyopathy: a narrative review.

Cardiovasc Diagn Ther

December 2024

The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China.

Background And Objective: Radiomics is an emerging technology that facilitates the quantitative analysis of multi-modal cardiac magnetic resonance imaging (MRI). This study aims to introduce a standardized workflow for applying radiomics to non-ischemic cardiomyopathies, enabling clinicians to comprehensively understand and implement this technology in clinical practice.

Methods: A computerized literature search (up to August 1, 2024) was conducted using PubMed to identify relevant studies on the roles and workflows of radiomics in non-ischemic cardiomyopathy.

View Article and Find Full Text PDF

Objectives: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).

Methods: DWI and clinical data from 155 EC patients were included in this study, consisting of 80 in the training set, 35 in the test set, and 40 in the external validation set. Radiomics features, convolutional neural network-based DL features, and clinical variables were analyzed.

View Article and Find Full Text PDF

Background: This study aims to quantify intratumoral heterogeneity (ITH) using preoperative CT image and evaluate its ability to predict pathological high-grade patterns, specifically micropapillary and/or solid components (MP/S), in patients diagnosed with clinical stage I solid lung adenocarcinoma (LADC).

Methods: In this retrospective study, we enrolled 457 patients who were postoperatively diagnosed with clinical stage I solid LADC from two medical centers, assigning them to either a training set (n = 304) or a test set (n = 153). Sub-regions within the tumor were identified using the K-means method.

View Article and Find Full Text PDF

The most prevalent form of malignant tumors that originate in the brain are known as gliomas. In order to diagnose, treat, and identify risk factors, it is crucial to have precise and resilient segmentation of the tumors, along with an estimation of the patients' overall survival rate. Therefore, we have introduced a deep learning approach that employs a combination of MRI scans to accurately segment brain tumors and predict survival in patients with gliomas.

View Article and Find Full Text PDF

Interpretable CT Radiomics-based Machine Learning Model for Preoperative Prediction of Ki-67 Expression in Clear Cell Renal Cell Carcinoma.

Acad Radiol

January 2025

Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Y.X., B.X., Z.W., C.P., M.X.). Electronic address:

Rationale And Objectives: To develop and externally validate interpretable CT radiomics-based machine learning (ML) models for preoperative Ki-67 expression prediction in clear cell renal cell carcinoma (ccRCC).

Methods: 506 patients were retrospectively enrolled from three independent institutes and divided into the training (n=357) and external test (n=149) sets. Ki67 expression was determined by immunohistochemistry (IHC) and categorized into low (<15%) and high (≥15%) expression groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!