Nanoparticle-assembled hydroxyapatite (HA) hollow microspheres have a high surface area and are convenient to handle, owing to their characteristic structure. In this study we characterized the protein adsorption of HA hollow microspheres prepared from CaCl and KHPO by a water-in-oil-in-water (W/O/W) emulsion method assisted by two surfactants: Span 80 and Tween 20. The HA hollow microspheres adsorbed bovine serum albumin, bovine γ-globulin, equine skeletal muscle myoglobin, and chicken egg white lysozyme in 10 mM sodium phosphate buffer (pH 6.8) in a Langmuir-type adsorption and desorbed the proteins in 800 mM sodium phosphate buffer (pH 6.8). The maximum adsorbed amounts of the HA hollow microspheres were 7.5-9.0 times higher than those of the microrods with a similar size range. The composite membranes of the HA microspheres and the poly(l-lactic acid) (PLLA) microporous membranes exhibited a high adsorption capacity for γ-globulin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6462782PMC
http://dx.doi.org/10.1016/j.heliyon.2019.e01490DOI Listing

Publication Analysis

Top Keywords

hollow microspheres
20
protein adsorption
8
plla microporous
8
microporous membranes
8
sodium phosphate
8
phosphate buffer
8
microspheres
6
hollow
5
adsorption characteristics
4
characteristics nanoparticle-assembled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!