In living organisms, naturally evolved sensors that constantly monitor and process environmental cues trigger corrective actions that enable the organisms to cope with changing conditions. Such natural processes have inspired biologists to construct synthetic living sensors and signalling pathways, by repurposing naturally occurring proteins and by designing molecular building blocks de novo, for customized diagnostics and therapeutics. In particular, designer cells that employ user-defined synthetic gene circuits to survey disease biomarkers and to autonomously re-adjust unbalanced pathological states can coordinate the production of therapeutics, with controlled timing and dosage. Furthermore, tailored genetic networks operating in bacterial or human cells have led to cancer remission in experimental animal models, owing to the network's unprecedented specificity. Other applications of designer cells in infectious, metabolic and autoimmune diseases are also being explored. In this Review, we describe the biomedical applications of synthetic gene circuits in major disease areas, and discuss how the first genetically engineered devices developed on the basis of synthetic-biology principles made the leap from the laboratory to the clinic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41551-018-0215-0 | DOI Listing |
Inflammopharmacology
January 2025
Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, 63100, Pakistan.
Clove oil obtained from Syzygium aromaticum (L.) is traditionally employed to treat inflammation associated with rheumatism, gastric disorders, and as an analgesic. Chemo-herbal combinations are known to have potent anti-inflammatory and analgesic effects, while mitigating the drug related side effects.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Edith Cowan University, Perth, Western Australia, Australia.
Background: Recently, there has been substantial interest in investigating the role of short-chain fatty acids (SCFAs) and, medium chain fatty acids (MCFA) in the neuroinflammation associated with Alzheimer's disease (AD). Specifically, butyrate (SCFA) and lauric acid (MCFA) have demonstrated potential in alleviating neuroinflammation and reducing toxicity associated with amyloid proteins. Additionally, they have been found to enhance mitochondrial function and reduce neuronal hyperactivity.
View Article and Find Full Text PDFACS Synth Biol
January 2025
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
Methyl ketones, key building blocks widely used in diverse industrial applications, largely depend on oil-derived chemical methods for their production. Here, we investigated biobased production alternatives for short-chain ketones, adapting the solvent-tolerant soil bacterium as a host for ketone biosynthesis either by whole-cell biocatalysis or using engineered minicells, chromosome-free bacterial vesicles. Organic acids (acetate, propanoate and butanoate) were selected as the main carbon substrate to drive the biosynthesis of acetone, butanone and 2-pentanone.
View Article and Find Full Text PDFNew Phytol
January 2025
Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037-100210, USA.
The shift to reductionist biology at the dawn of the genome era yielded a 'parts list' of plant genes and a nascent understanding of complex biological processes. Today, with the genomics era in full swing, advances in high-definition genomics enabled precise temporal and spatial analyses of biological systems down to the single-cell level. These insights, coupled with artificial intelligence-driven in silico design, are propelling the development of the first synthetic plants.
View Article and Find Full Text PDFNat Chem Biol
January 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
Synthetic genetic circuits program the cellular input-output relationships to execute customized functions. However, efforts to scale up these circuits have been hampered by the limited number of reliable regulatory mechanisms with high programmability, performance, predictability and orthogonality. Here we report a class of split-intron-enabled trans-splicing riboregulators (SENTRs) based on de novo designed external guide sequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!