DNA methylation analysis and editing in single mammalian oocytes.

Proc Natl Acad Sci U S A

Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200135 Shanghai, China;

Published: May 2019

Mammalian oocytes carry specific nongenetic information, including DNA methylation to the next generation, which is important for development and disease. However, evaluation and manipulation of specific methylation for both functional analysis and therapeutic purposes remains challenging. Here, we demonstrate evaluation of specific methylation in single oocytes from its sibling first polar body (PB1) and manipulation of specific methylation in single oocytes by microinjection-mediated dCas9-based targeted methylation editing. We optimized a single-cell bisulfite sequencing approach with high efficiency and demonstrate that the PB1 carries similar methylation profiles at specific regions to its sibling oocyte. By bisulfite sequencing of a single PB1, the methylation information regarding agouti viable yellow ( )-related coat color, as well as imprinting linked parthenogenetic development competency, in a single oocyte can be efficiently evaluated. Microinjection-based dCas9-Tet/Dnmt-mediated methylation editing allows targeted manipulation of specific methylation in single oocytes. By targeted methylation editing, we were able to reverse -related coat color, generate full-term development of bimaternal mice, and correct familial Angelman syndrome in a mouse model. Our work will facilitate the investigation of specific methylation events in oocytes and provides a strategy for prevention and correction of maternally transmitted nongenetic disease or disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525536PMC
http://dx.doi.org/10.1073/pnas.1817703116DOI Listing

Publication Analysis

Top Keywords

specific methylation
20
manipulation specific
12
methylation single
12
single oocytes
12
methylation editing
12
methylation
11
dna methylation
8
mammalian oocytes
8
targeted methylation
8
bisulfite sequencing
8

Similar Publications

Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.

View Article and Find Full Text PDF

Tetramethylammonium (TMA) is a ubiquitous cationic motif in biochemistry, found in the charged choline headgroup of membrane phospholipids and in tri-methylated lysine residues, which modulates histone-DNA interactions and impacts epigenetic mechanisms. TMA interactions with anionic species, particularly carboxylate groups of amino acid residues and extracellular sugars, are of substantial biological relevance, as these interactions mediate a wide range of cellular processes. This study investigates the molecular interactions between TMA and acetate, representing carboxylate-containing groups, using neutron scattering experiments complemented by force fields and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Invasive ductal carcinoma (IDC) is the most common type of breast cancer, primarily affecting women in the United States and across the world. This review summarizes key concepts related to IDC causes, treatment approaches, and the identification of biological markers for specific prognoses. Furthermore, we reviewed many studies, including those involving patients with IDC and ductal carcinoma in situ (DCIS) that progressed to IDC.

View Article and Find Full Text PDF

Histone demethylases in autophagy and inflammation.

Cell Commun Signal

January 2025

School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.

Autophagy dysfunction is associated with changes in autophagy-related genes. Various factors are connected to autophagy, and the mechanism regulating autophagy is highly complicated. Epigenetic changes, such as aberrant expression of histone demethylase, are actively associated not only with oncogenesis but also with inflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!