Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Early loss of vision is classically linked to large-scale cross-modal plasticity within occipital cortex. Much less is known about the effects of early blindness on auditory cortex. Here, we examine the effects of early blindness on the cortical representation of auditory frequency within human primary and secondary auditory areas using fMRI. We observe that 4 individuals with early blindness (2 females), and a group of 5 individuals with anophthalmia (1 female), a condition in which both eyes fail to develop, have lower response amplitudes and narrower voxelwise tuning bandwidths compared with a group of typically sighted individuals. These results provide some of the first evidence in human participants for compensatory plasticity within nondeprived sensory areas as a result of sensory loss. Early blindness has been linked to enhanced perception of the auditory world, including auditory localization and pitch perception. Here we used fMRI to compare neural responses with auditory stimuli within auditory cortex across sighted, early blind, and anophthalmic individuals, in whom both eyes fail to develop. We find more refined frequency tuning in blind subjects, providing some of the first evidence in human subjects for compensation within nondeprived primary sensory areas as a result of blindness early in life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6595951 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2896-18.2019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!