Cariprazine is a new atypical antipsychotic drug (APD) with a unique pharmacodynamic profile, different from both typical and atypical APDs. Specifically, cariprazine acts as a partial agonist at the dopamine (DA) D2 and D3 receptors and serotonin 5-HT1A receptors, and as an antagonist at the 5-HT2B receptors. Moreover, it shows moderate affinities for adrenergic, histaminergic, and cholinergic receptors that are involved in mediating the side effects characteristic of typical APDs. In this review, we discuss the contribution of DA D3 receptors (D3Rs) in the etiology and pathophysiology of schizophrenia and the potential benefits that may be associated with a more selective targeting of D3R by APDs, as compared to other dopaminergic and non-dopaminergic receptor subtypes. Cariprazine, by acting on D3Rs, ameliorates anhedonia and cognitive deficits in animal models based on environmental or pharmacological manipulation. The reviewed results support the potential benefits of cariprazine in treating negative symptoms and cognitive deficits of schizophrenia, and therefore representing a promising approach in addressing the unmet clinical needs for the improved treatment of this serious neuropsychiatric disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S109285291900083XDOI Listing

Publication Analysis

Top Keywords

dopamine receptors
8
potential benefits
8
cognitive deficits
8
receptors
6
cariprazine
5
role dopamine
4
receptors mechanism
4
mechanism action
4
action cariprazine
4
cariprazine cariprazine
4

Similar Publications

Dopamine can play opposing physiological roles depending on the receptor subtype. In the fruit fly , and encode the D- and D-like receptors, respectively, and are reported to oppositely regulate intracellular cAMP levels. Here, we profiled the expression and subcellular localization of endogenous Dop1R1 and Dop2R in specific cell types in the mushroom body circuit.

View Article and Find Full Text PDF

Adolescence is a developmental period marked by significant alterations to brain neurobiology and behavior. Adolescent nicotine use disrupts developmental trajectories and increases vulnerability to maladaptive drug-taking in adulthood. The mesolimbic dopamine (DA) system, including the nucleus accumbens core (NAc), mediates the reinforcing effects of nicotine.

View Article and Find Full Text PDF

Up to 45% of patients with Parkinson's disease (PD) experience impulse control disorders (ICDs), characterized by a loss of voluntary control over impulses, drives or temptations. This study aimed to investigate whether previously identified genetic and psychiatric risk factors interact towards the development of ICDs in PD. A total of 278 de novo PD patients (ICD-free at enrollment) were selected from the Parkinson's Progression Markers Initiative database.

View Article and Find Full Text PDF

Recreational use of nitrous oxide (NO) has risen dramatically over the past decades. This study aimed to examine its rewarding effect and the underlying mechanisms. The exposure of mice to a subanesthetic concentration (20%) of NO for 30 min for 4 consecutive days paired with NO in the morning and paired with the air in the afternoon produced apparent rewarding behavior in the conditioned place preference (CPP) paradigm.

View Article and Find Full Text PDF

Trace amine signaling in zebrafish models: CNS pharmacology, behavioral regulation and translational relevance.

Eur J Pharmacol

January 2025

Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China. Electronic address:

Tyramine, β-phenylethylamine, octopamine and other trace amines are endogenous substances recently recognized as important novel neurotransmitters in the brain. Trace amines act via multiple selective trace amine-associated receptors (TAARs) of the G protein-coupled receptor family. TAARs are expressed in various brain regions and modulate neurotransmission, neuronal excitability, adult neurogenesis, cognition, mood, locomotor activity and olfaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!