Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Caucasian population groups have a higher propensity to develop skin cancer, and associated clinical interventions often present substantial financial burden on healthcare services. Conventional treatments are often not suitable for all patient groups as a result of poor efficacy and toxicity profiles. The primary objective of this study was to develop a deformable liposomal formulation, the properties of which being dictated by the surfactant Tween 20, for the dermal cellular delivery of epigallocatechin gallatein (EGCG), a compound possessing antineoplastic properties. The results demonstrated a significant ( ≤ 0.05) decrease in liposome deformability index (74 ± 8 to 37 ± 7) as Tween 20 loading increased from 0 to 10% w/w, indicating an increase in elasticity. EGCG release over 24-h demonstrated Tween 20 incorporation directly increased release from 13.7% ± 1.1% to 94.4% ± 4.9% (for 0 and 10% w/w Tween 20 respectively). Finally, we demonstrated DilC-loaded deformable liposomes were localized intracellularly within human dermal fibroblast and keratinocyte cells within 2 h. Thus, it was evident that deformable liposomes may aid drug penetration into dermal cells and would be useful in developing a controlled-release formulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08982104.2019.1604746 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!