Enhancing Saltiness Perception Using Chitin Nanomaterials.

Polymers (Basel)

Department of Food Science, National Taiwan Ocean University, 2, Pei-Ning Road, Keelung 20224, Taiwan.

Published: April 2019

In the present study, we prepared and characterized chitin nanomaterials with different diameters, lengths, and degree of deacetylation (DD), and investigated their capability for enhancing saltiness perception. Chitin was isolated from squid pens and transformed into chitin nanofiber (CNF), deacetylated chitin nanofiber (DACNF), and chitin nanocrystal (CNC) by ultrasonication, alkali treatment followed by ultrasonication and acid hydrolysis, respectively. The diameters of CNF, CNC and DACNF were 17.24 nm, 16.05 nm and 15.01 nm while the lengths were 1725.05 nm, 116.91 nm, and 1806.60 nm, respectively. The aspect ratios of CNF and DACNF were much higher than that of CNC. The crystalline indices of CNF and CNC were lower than that of original β-chitin, suggesting that ultrasonication and acid hydrolysis might change the molecular arrangement in crystalline region of chitin. The zeta-potentials were between 19.73 nV and 30.08 mV of chitin nanomaterials in distilled water. Concentrations of chitin nanomaterials (40-74 μg/mL) showed minimal effect on zeta-potential, whereas increasing the level of NaCl reduced the zeta-potential of solution. Moreover, NaCl solution (0.3%) with chitin nanomaterials addition produced significant higher saltiness perception than that of solution with NaCl alone. Therefore, chitin nanomaterials may be promising saltiness enhancers in the food industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523459PMC
http://dx.doi.org/10.3390/polym11040719DOI Listing

Publication Analysis

Top Keywords

chitin nanomaterials
24
saltiness perception
12
chitin
11
enhancing saltiness
8
perception chitin
8
chitin nanofiber
8
ultrasonication acid
8
acid hydrolysis
8
cnf cnc
8
solution nacl
8

Similar Publications

Multiple crosslinked, self-healing, and shape-adaptable hydrogel laden with pain-relieving chitosan@borneol nanoparticles for infected burn wound healing.

Theranostics

January 2025

Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.

Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.

View Article and Find Full Text PDF

A PDMS/chitosan/MPMs composite film based on multi-field coupling enhancement for African swine fever virus P72 protein detection.

Mikrochim Acta

January 2025

Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China.

African swine fever (ASF) is an acute hemorrhagic disease in pigs caused by the African swine fever virus (ASFV), which has a high mortality rate and brought great damage to global pig farming industry. At present, there is no effective treatment or vaccine to combat ASFV infection, so early detection of ASFV has become particularly important. Therefore, the PDMS/chitosan/MPMs composite film was proposed to detect ASFV P72.

View Article and Find Full Text PDF

In recent years, increased attention has been given to the effective use of chitin nanofibers (ChNFs). We have developed a method to fabricate thinner chitin nanomaterials, called scale-down chitin nanofibers (SD-ChNFs), by a bottom-up procedure at the nanoscale level, with subsequent disintegration by electrostatic repulsion. The surface modification of SD-ChNFs is anticipated to provide new properties and functions for their practical applications.

View Article and Find Full Text PDF

Tofacitinib (Tof), a commercially available pan-Janus kinases inhibitor, is approved for the treatment of moderate to severe ulcerative colitis. However, its clinical application is limited due to dose-dependent systemic side effects. The present study aims to develop an efficient oral colon-targeted drug delivery systems using prebiotic pectin (Pcn) and chitosan (Csn) polysaccharides as a shell, with Tof loaded into a Bovine Serum Albumin (BSA) core, and improving it with chondroitin sulfate (Chs), thus constructing Tof@BSA-Chs-CP nanoparticles (NPs).

View Article and Find Full Text PDF

A smart responsive NIR-operated chitosan-based nanoswitch to induce cascade immunogenic tumor ferroptosis via cytokine storm.

Carbohydr Polym

March 2025

College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China. Electronic address:

In this work we present a near-infrared (NIR)-operated nanoswitch based on chitosan nanoparticles (EpCAM-CS-co-PNVCL@IR780/IMQ NPs) that induces cascade immunogenic tumor ferroptosis via cytokine storm. The formulation was prepared by loading a photosensitiser (IR780) and an immunotherapeutic drug (imiquimod; IMQ) into temperature- and pH-responsive chitosan-based NPs functionalized with tumor-targeting aptamers. The EpCAM aptamer can chaperone the NPs selectively into cancer cells, and allow them to enter the cell nucleus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!