With the development of additive manufacturing, the building of new categories of lightweight structures such as random foams have been offered. Nevertheless, given the complexity of the required parts, macroscopic defects may result or the process may even fail. Therefore, proper actions must be taken at the design stage. In this paper, a method of design for additive manufacturing (DfAM) to build metal random foam structures is proposed. Namely, a procedure is suggested to generate a structure that has interconnected porosity. This procedure is based on the aimed fractional density and several technical requirements, and then the geometry is optimized and meshed. To validate the algorithm, a test article consisting of a metal cylinder with spherical random pores ranging from 1 to 6 mm in diameter with a resulting fractional density of 40 ± 2% has been conceived and manufactured by means of laser powder bed fusion (LPBF). On the basis of the outcome of the manufacturing process, crucial information has been gathered to update the algorithm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515118PMC
http://dx.doi.org/10.3390/ma12081301DOI Listing

Publication Analysis

Top Keywords

foam structures
8
laser powder
8
powder bed
8
bed fusion
8
additive manufacturing
8
fractional density
8
design fabrication
4
random
4
fabrication random
4
random metal
4

Similar Publications

To accelerate the water dissociation in the Volmer step and alleviate the destruction of bubbles to the physical structure of catalysts during the alkaline hydrogen evolution, an integrated electrode of cobalt oxide and cobalt-molybdenum oxide grown on Ni foam, named CoO-Co2Mo3O8, is designed. This integrated electrode enhances the catalyst-substrate interaction confirmed by a micro-indentation tester, and thus hinders the destruction of the physical structure of catalysts caused by bubbles. Electrochemical testing shows the occurrence of a surface reconstruction of the integrated electrode, and CoO is transformed into Co(OH)2, denoted as Co(OH)2-Co2Mo3O8.

View Article and Find Full Text PDF

The interfacial mechanical characteristics of sandwich structures are crucial in defining the comprehensive mechanical performance of the whole structure. Nevertheless, in practical applications, the interface often emerges as the weakest segment due to potential defects in the interface of porous metal sandwich plates (PMSP). This study aims to explore the regulatory mechanisms influencing the mechanical characteristics of nano-SiO-reinforced aluminum foam sandwich structure (AFS) interfaces and to propose an effective strategy to achieve AFS interfaces with superior and stable mechanical properties.

View Article and Find Full Text PDF

The porous structure, in which many pores are intentionally placed inside the material, has excellent impact energy absorption properties. Recent studies have attempted to fabricate multi-layered porous structures with different mechanical properties within a single porous structure sample, and the mechanical properties of these structures are being elucidated. However, these studies mainly attempted to vary the densities, pore structures, and alloy compositions within a single material, such as aluminum, for the entire sample.

View Article and Find Full Text PDF

The mechanical behavior of AA6082 Kelvin cell foams under compressive tests has been investigated in this work. The lost-PLA replication technique, a simple and cheap technique, has been adopted as the production method. Six Al alloy samples have been made and successively subjected to compressive tests in order to examine the mechanical response and the repeatability too.

View Article and Find Full Text PDF

Steel Ball Impact on SiC/AlSi12 Interpenetrated Composite by Peridynamics.

Materials (Basel)

January 2025

CT-Lab UG (Haftungsbeschränkt), Nobelstr. 15, 70569 Stuttgart, Germany.

Silicon carbide and an aluminum alloy (SiC/AlSi12) composite are obtained during the pressurized casting process of the aluminum alloy into the SiC foam. The foam acts as a high-stiffness skeleton that strengthens the aluminum alloy matrix. The goal of the paper is to describe the behavior of the material, considering its internal structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!