Fibroblast growth factor 21 secretion enhances glucose uptake in mono(2-ethylhexyl)phthalate-treated adipocytes.

Toxicol In Vitro

National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan. Electronic address:

Published: September 2019

Previous studies revealed that cellular accumulation of mono(2-ethylhexyl)phthalate (MEHP) disturbed energy metabolism in adipocytes, where glucose uptake was significantly increased. The present study aimed to determine the mechanisms underlying the increased glucose uptake. MEHP-treated 3T3-L1 adipocytes exhibited a significantly increased glucose uptake activity. Immunoblot analysis suggested that the insulin-induced signals were not responsible for the increased glucose uptake. qPCR analysis revealed that both Glut1 and Glut4 genes were highly expressed during adipogenesis; Glut1 mRNA levels in MEHP-treated adipocytes were significantly increased. Moreover, MEHP-treated adipocytes exhibited significantly increased levels of fibroblast growth factor 21 (FGF21) in both mRNA and secreted protein. FGF21 is a peptide hormone with pleiotropic effects on regulation of insulin sensitivity and glucose/lipid homeostasis. We found that MEHP, FGF21, and lactate in culture medium together enhanced Fgf21 gene expression in MEHP-treated adipocytes. FGF21 signaling requires fibroblast growth factor receptor (FGFR) and βKlotho. Fgfr family and βKlotho genes were actively expressed during adipogenesis; mRNA levels of Fgfr3 and Fgfr4 genes in MEHP-treated adipocytes were significantly increased. Roles of FGF21/FGFR and phosphoinositide 3-kinase (PI3K)/AKT signal axes in regulation of glucose uptake were determined. We demonstrated that FGF21/FGFR signals played the major roles in up-regulation of the basal glucose uptake in MEHP-treated adipocytes. The in vitro evidence suggests that cellular FGF21 secretion enhances the basal glucose uptake in MEHP-treated adipocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2019.04.021DOI Listing

Publication Analysis

Top Keywords

glucose uptake
32
mehp-treated adipocytes
24
fibroblast growth
12
growth factor
12
increased glucose
12
uptake mehp-treated
12
adipocytes
9
secretion enhances
8
glucose
8
uptake
8

Similar Publications

Background: Immunotherapy that targets immune checkpoints has achieved revolutionary success, but its application in solid tumors remains limited, highlighting the need for reliable enhancement of the efficacy of immunotherapy. Golgi protein 73 (GP73), a Golgi membrane protein, has been implicated in various cellular processes, including immune regulation. Recent studies suggested that GP73 may play a role in modulating the immune response in patients with cancer.

View Article and Find Full Text PDF

Multi Targeted Activity of Cocculus hirsutus through Modulation of DPP-IV and PTP-1B Leading to Enhancement of Glucose Uptake and Attenuation of Lipid Accumulation.

Appl Biochem Biotechnol

January 2025

Tissue Culture and Drug Discovery Laboratory, Department of Biotechnology, Anna University, Chennai, 600 025, India.

Multi-targeted therapies are gaining attention in the management of multifactorial diseases due to their poly pharmacology, enhanced potency and reduced toxicity. Metabolic disorders like Type 2 diabetes mellitus (T2DM) and obesity necessitate multi-targeted therapy to improve insulin sensitivity, regulate glucose homeostasis and support weight loss. Medicinal plants rich in bioactive compounds exhibit multi-targetted action with minimal side effects.

View Article and Find Full Text PDF

Matrix-free human 2D organoids recapitulate duodenal barrier and transport properties.

BMC Biol

January 2025

Department of General and Visceral Surgery, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, 12203, Germany.

Background: Traditionally, transformed cell line monolayers have been the standard model for studying epithelial barrier and transport function. Recently, intestinal organoids were proposed as superior in recapitulating the intestine. Typically, 3D organoids are digested and seeded as monolayers on gelatinous matrix pre-coated surfaces for anchorage.

View Article and Find Full Text PDF

Recognizing the need for innovative therapeutic approaches in the management of autoimmune diseases , our current investigation explores the potential of autologous extracellular vesicles (EVs), derived from blood of rheumatoid arthritis (RA) patients, to serve as therapeutic vectors to improve drug delivery. We found that circulating EVs derived from arthritic mice (Collagen-induced arthritis model) express the joint/synovia homing receptor, αVβ3 integrin. Importantly, both autologous labelled EVs, derived from blood of arthritic mice (Collagen antibody-induced arthritis model) and healthy mice-derived EVs, exhibit targeted migration toward inflamed synovia without infiltrating healthy joints, as demonstrated by an in-vivo imaging system.

View Article and Find Full Text PDF

D-ribose-5-phosphate inactivates YAP and functions as a metabolic checkpoint.

J Hematol Oncol

January 2025

Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.

Background: Targeting glucose uptake by glucose transporter (GLUT) inhibitors is a therapeutic opportunity, but efforts on GLUT inhibitors have not been successful in the clinic and the underlying mechanism remains unclear. We aim to identify the key metabolic changes responsible for cancer cell survival from glucose limitation and elucidate its mechanism.

Methods: The level of phosphorylated YAP was analyzed with Western blotting and Phos-tag immunoblotting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!