Streptozotocin (STZ) is a glucosamine-nitrosourea commonly used to induce long-lasting models of diabetes mellitus and Alzheimer's disease. Direct toxicity of STZ on the pancreas and kidneys has been well characterized, but the acute effect of this compound on brain tissue has received less attention. Herein, we investigated the acute and direct toxicity of STZ on fresh hippocampal slices, measuring changes in BDNF and S100B secretion (two widely-used peripheral markers of brain injury), as well as glucose metabolism. Moreover, we investigated in vivo changes of these proteins in the hippocampus, 48 h after intracerebroventricular STZ administration. Transverse hippocampal slices (0.3 mm thick) were obtained using a McIlwain tissue chopper and target proteins were measured in the incubation medium by ELISA. STZ decreased S100B secretion, but increased BDNF secretion as well as causing impairment in glucose uptake in hippocampal slices, measured using [H] deoxy-glucose. Glucose levels and glucose metabolism differentially modulated S100B secretion in astrocytes and BDNF secretion in neurons, when evaluated under specific conditions (high-potassium medium, presence of tetrodotoxin or fluorocitrate). Moreover, at 48 h after intracerebroventricular STZ, hippocampal BDNF content, but not S100B, was reduced. Our results indicate that BDNF and S100B are useful and sensitive markers of glucose metabolism disturbance and reinforce these proteins as general acute markers of brain disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2019.04.013DOI Listing

Publication Analysis

Top Keywords

glucose metabolism
16
hippocampal slices
12
s100b secretion
12
direct toxicity
8
toxicity stz
8
bdnf s100b
8
markers brain
8
48 h intracerebroventricular
8
intracerebroventricular stz
8
bdnf secretion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!