The development of a hydrogel-based synthetic cartilage has the potential to overcome many limitations of current chondral defect treatments. Many attempts have been made to replicate the unique characteristics of cartilage in hydrogels, but none have simultaneously achieved high modulus, strength, and toughness while maintaining the necessary hydration required for lubricity. Herein, double network (DN) hydrogels, composed of a poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) first network and a poly( N-isopropylacrylamide- co-acrylamide) [P(NIPAAm- co-AAm)] second network, are evaluated as a potential off-the-shelf material for cartilage replacement. While predominantly used for its thermosensitivity, PNIPAAm is employed to achieve superior mechanical properties with its thermal transition temperature tuned above the physiological range. These PNIPAAm-based DNs demonstrate a 50-fold increase in compressive strength (∼25 MPa, similar to cartilage) compared to traditional single network hydrogels while also achieving cartilage-like modulus (∼1 MPa) and hydration (∼80%). In direct comparison to healthy cartilage (porcine), these hydrogels were confirmed to not only parallel the strength, modulus, and hydration of native articular cartilage but also exhibit a 50% lower coefficient of friction (COF). The exceptional cartilage-like properties of the PAMPS/P(NIPAAm- co-AAm) DN hydrogels makes them candidates for synthetic cartilage grafts for chondral defect repair, even in load-bearing regions of the body.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.9b00237 | DOI Listing |
Sci Bull (Beijing)
January 2025
Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:
The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.
View Article and Find Full Text PDFPharmaceutics
January 2025
CDL Research, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
Background/objectives: Glioblastoma is the most common and lethal primary brain tumor. Patients often suffer from tumor- and treatment induced vasogenic edema, with devastating neurological consequences. Intracranial edema is effectively treated with dexamethasone.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria.
: This study is an attempt to reveal the potential of two types of interpenetrating polymer network (IPN) hydrogels based on poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N,N-dimethylacrylamide) (PDMAM). These IPNs were evaluated for their potential for dermal delivery of the hydrophobic drug dexamethasone (DEX). : The two types of IPNs were analyzed for their rheological behavior, swelling characteristics, and drug-loading capacity with DEX.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Optometry & Vision Science, Daegu Catholic University, Gyeongsan 38430, Republic of Korea.
This study aims to build an optimal drug delivery system by manufacturing and evaluating a hydrogel contact lens using Tretinoin (ATRA) and protein nanoparticles to improve the drug delivery system as an ophthalmic medical contact lens. To evaluate the optical and physical properties of the manufactured lens, the spectral transmittance, refractive index, water content, contact angle, AFM, tensile strength, drug delivery, and antibacterial properties were analyzed. The contact lens was manufactured to contain ATRA and bovine serum albumin (BSA) in different ways, and the results confirmed that A, B, and C each had different physical properties.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia.
Chronic wounds present a substantial healthcare obstacle, marked by an extended healing period that can persist for weeks, months, or even years. Typically, they do not progress through the usual phases of healing, which include hemostasis, inflammation, proliferation, and remodeling, within the expected timeframe. Therefore, to address the socioeconomic burden in taking care of chronic wounds, hydrogel-based therapeutic materials have been proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!