Metabolomics-Based Biosignatures of Prostate Cancer in Patients Following Radiotherapy.

OMICS

1 Department of Biochemistry, Cellular and Molecular Biology, School of Medicine, Georgetown University, Washington, District of Columbia.

Published: April 2019

Metabolomics offers new promise for research on prostate cancer (PCa) and its personalized treatment. Metabolomic profiling of radiation-treated PCa patients is particularly important to reveal their new metabolomic status, and evaluate the radiation effects. In addition, bioinformatics-integrated metabolomics-based approaches for disease profiling and assessment of therapy could help develop precision biomarkers in a context of PCa. We report mass spectrometry-based untargeted (global) serum metabolomics findings from patients with PCa ( = 55) before and after treatment with stereotactic body radiation therapy (SBRT), and intensity-modulated radiation therapy (IMRT) with SBRT, and using parsimony phylogenetic analysis. Importantly, the radiation-treated serum metabolome of patients represented a unique robust cluster on a cladogram that was distinct from the pre-RT metabolome. The altered radiation responsive serum metabolome was defined by predominant aberrations in the metabolic pathways of nitrogen, pyrimidine, purine, porphyrin, alanine, aspartate, glutamate, and glycerophospholipid. Our findings collectively suggest that global metabolomics integrated with parsimony phylogenetics offer a unique and robust systems biology analytical platform for powerful unbiased determination of radiotherapy (RT)-associated biosignatures in patients with PCa. These new observations call for future translational research for evaluation of metabolomic biomarkers in PCa prognosis specifically, and response to radiation treatment broadly. Radiation metabolomics is an emerging specialty of systems sciences and clinical medicine that warrants further research and educational initiatives.

Download full-text PDF

Source
http://dx.doi.org/10.1089/omi.2019.0006DOI Listing

Publication Analysis

Top Keywords

prostate cancer
8
patients pca
8
radiation therapy
8
serum metabolome
8
unique robust
8
pca
6
radiation
6
patients
5
metabolomics-based biosignatures
4
biosignatures prostate
4

Similar Publications

Here we report results of a phase 1 multi-institutional, open-label, dose-escalation trial (NCT02744287) of BPX-601, an investigational autologous PSCA-directed GoCAR-T® cell product containing an inducible MyD88/CD40 ON-switch responsive to the activating dimerizer rimiducid, in patients with metastatic pancreatic (mPDAC) or castration-resistant prostate cancer (mCRPC). Primary objectives were to evaluate safety and tolerability and determine the recommended phase 2 dose/schedule (RP2D). Secondary objectives included the assessment of efficacy and characterization of the pharmacokinetics of rimiducid.

View Article and Find Full Text PDF

Background: In TALAPRO-2, the poly(ADP-ribose) polymerase inhibitor talazoparib plus the androgen receptor-signaling inhibitor enzalutamide improved radiographic progression-free survival (rPFS) versus placebo plus enzalutamide (hazard ratio [HR] = 0.63; 95% CI, 0.51-0.

View Article and Find Full Text PDF

Advancements in pseudouridine modifying enzyme and cancer.

Front Cell Dev Biol

December 2024

Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China.

Pseudouridine (Ψ) is a post-transcriptional modifier of RNA, often referred to as the 'fifth nucleotide' owing to its regulatory role in various biological functions as well as because of its significant involvement in the pathogenesis of human cancer. In recent years, research has revealed various Ψ modifications in different RNA types, including messenger RNA, transfer RNA, ribosomal RNA, small nuclear RNA, and long noncoding RNA. Pseudouridylation can significantly alter RNA structure and thermodynamic stability, as the Ψ-adenine (A) base pair is more stable than the typical uridine (U)-A base pair is due to its structural similarity to adenine.

View Article and Find Full Text PDF

Silencing of STEAP3 suppresses cervical cancer cell proliferation and migration via JAK/STAT3 signaling pathway.

Cancer Metab

December 2024

Department of Obstetrics and Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, China.

Article Synopsis
  • STEAP3 is a critical protein associated with cervical cancer (CC) progression, showing strong expression in CC tissues and linked to poor patient prognosis.
  • The study employed various methods, such as immunohistochemistry and RNA sequencing, to investigate STEAP3's role, revealing that lower methylation levels of STEAP3 are connected to worse outcomes.
  • Knockdown of STEAP3 in CC cells reduced their growth and invasion abilities while enhancing drug sensitivity, suggesting STEAP3 drives cancer cell activity through the activation of the JAK/STAT3 signaling pathway.
View Article and Find Full Text PDF

Background: To assess the clinical utility of PCA3 in the diagnostic accuracy, the correlation between PCA3 and biopsy or pathological characteristics and the performance of PCA3 to reduce the unnecessary biopsies in Chinese population.

Methods: A prospective study including patients with indication of prostate biopsies from 4 centers was conducted. All patients underwent PCA3 urine tests and prostate biopsies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!