Taken individually, chemical labeling and mass spectrometry are two well-established tools for the structural characterization of biomolecular complexes. A way to combine their respective advantages is to perform gas-phase ion-molecule reactions (IMRs) inside the mass spectrometer. This is, however, not so well developed because of the limited range of usable chemicals and the lack of commercially available IMR devices. Here, we modified a traveling wave ion mobility mass spectrometer to enable IMRs in the trapping region of the instrument. Only one minor hardware modification is needed to allow vapors of a variety of liquid reagents to be leaked into the trap traveling wave ion guide of the instrument. A diverse set of IMRs can then readily be performed without any loss in instrument performance. We demonstrate the advantages of implementing IMR capabilities in general, and to this quadrupole-ion mobility-time-of-flight (Q-IM-TOF) mass spectrometer in particular, by exploiting the full functionality of the instrument, including mass selection, ion mobility separation, and post-mobility fragmentation. The potential to carry out gas-phase IMR kinetics experiments is also illustrated. We demonstrate the versatility of the setup using gas-phase IMRs of established utility for biological mass spectrometry, including hydrogen-deuterium exchange, ion-molecule proton transfer reactions, and covalent modification of DNA anions using trimethylsilyl chloride.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.9b00541 | DOI Listing |
Mass Spectrom Rev
January 2025
Department of Chemistry, University of Texas at Austin, Austin, Texas, USA.
Mass spectrometry (MS) has become a critical tool in the characterization of covalently modified nucleic acids. Well-developed bottom-up approaches, where nucleic acids are digested with an endonuclease and the resulting oligonucleotides are separated before MS and MS/MS analysis, provide substantial insight into modified nucleotides in biological and synthetic nucleic. Top-down MS presents an alternative approach where the entire nucleic acid molecule is introduced to the mass spectrometer intact and then fragmented by MS/MS.
View Article and Find Full Text PDFMolecules
January 2025
Department of Environmental Chemistry and Bioanalytics, Gagarina 7, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun, Poland.
Bisphenols may negatively impact human health. In this study, we propose the use of HPLC-FLD for the simultaneous determination of bisphenols in pericardial fluid samples collected from patients with coronary artery disease undergoing coronary artery bypass surgery. For sample preparation, a fast, simple, and "green" DLLME method was used, achieving mean recovery values in the range of 62%-98% with relative standard deviations between 2% and 6% for all analytes.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
Department of Pharmaceutical Analysis, School of Pharmacy, Guizhou Medical University, Gui'an New District, Guizhou 561113, PR China. Electronic address:
Dendrobine is a sesquiterpene alkaloid primarily used in the treatment of inflammatory diseases, immune system disorders, and conditions related to oxidative stress. To understand the possible degradation pathways of dendrobine for its quality control, we conducted an in-depth investigation of its degradation products using forced degradation methods. The separation of dendrobine and its degradation products was achieved on a Shim-pack XR-ODS III (75 mm × 2 mm, 1.
View Article and Find Full Text PDFFood Chem
January 2025
SAAS Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China. Electronic address:
The flavor evolution of yellow peaches during ripening was investigated using a gas chromatography-mass spectrometer (GC-MS), metabolomics, and electronic sensoristic techniques. Of the 41 volatiles quantified, 13 increased the intensity of the aroma based on the odor activity values (OAVs). Additionally, 142 non-volatile compounds were identified.
View Article and Find Full Text PDFLangmuir
January 2025
College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
The development of probes for the efficient detection of volatile organic compounds is crucial for both human health protection and environmental monitoring. In this study, we successfully synthesized a ratiometric fluorescent sensing material [Eu-UiO-67 (1:1)], featuring dual-emission fluorescence peaks via a one-pot method. This material demonstrated exceptional ratiometric fluorescence recognition properties for liquid styrene and isoprene, achieving low limit of detections (LODs) of 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!