Transport Evidence for Sulfur Vacancies as the Origin of Unintentional n-Type Doping in Pyrite FeS.

ACS Appl Mater Interfaces

Department of Chemical Engineering and Materials Science , University of Minnesota, Minneapolis , Minnesota 55455 , United States.

Published: May 2019

Pyrite FeS has long been considered a potential earth-abundant low-cost photovoltaic material for thin-film solar cells but has been plagued by low power conversion efficiencies and open-circuit voltages. Recent efforts have identified a lack of understanding and control of doping, as well as uncontrolled surface conduction, as key roadblocks to the development of pyrite photovoltaics. In particular, while n-type bulk behavior in unintentionally doped single crystals and thin films is speculated to arise from sulfur vacancies (V), proof remains elusive. Here, we provide strong evidence, from extensive electronic transport measurements on high-quality crystals, that V are deep donors in bulk pyrite. Otherwise identical crystals grown via chemical vapor transport under varied S vapor pressures are thoroughly characterized structurally and chemically, and shown to exhibit systematically different electronic transport. Decreased S vapor pressure during growth leads to reduced bulk resistivity, increased bulk Hall electron density, reduced transport activation energy, onset of positive temperature coefficient of resistivity, and approach to an insulator-metal transition, all as would be expected from increased V donor density. Impurity analyses show that these trends are uncorrelated with metal impurity concentration and that extracted donor densities significantly exceed total impurity concentrations, directly evidencing a native defect. Well-controlled, wide-range n-doping of pyrite is thus achieved via the control of V concentration, with substantial implications for photovoltaic and other applications. The location of the V state within the gap, the influence of specific impurities, unusual aspects to the insulator-metal transition, and the influence of doping on surface conduction are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b01335DOI Listing

Publication Analysis

Top Keywords

sulfur vacancies
8
pyrite fes
8
surface conduction
8
electronic transport
8
insulator-metal transition
8
transport
5
pyrite
5
transport evidence
4
evidence sulfur
4
vacancies origin
4

Similar Publications

Fenton reaction technology has worked well in water and wastewater treatment; however it is often limited by such problems as continuous external supply of HO, slow Fe/Fe cycle rate, high energy requirements, and maintenance of low pH during operation. Herein, a novel self-sufficient heterogeneous Fenton system based on Fe/MoS was designed, fabricated, and optimized to effectively address these problems. The combined presence of Fe and sulfur vacancies sites in MoS played a pivotal role in the generation of HOvia two-step single-electron reduction process without any energy consumption.

View Article and Find Full Text PDF

Two-dimensional (2D) materials hold significant potential for the development of neuromorphic computing architectures owing to their exceptional electrical tunability, mechanical flexibility, and compatibility with heterointegration. However, the practical implementation of 2D memristors in neuromorphic computing is often hindered by the challenges of simultaneously achieving low latency and low energy consumption. Here, we demonstrate memristors based on 2D cobalt phosphorus trisulfide (CoPS), which achieve impressive performance metrics including high switching speed (20 ns), low switching energy (1.

View Article and Find Full Text PDF

Pt single atoms promoting the construction of asymmetric double sites to achieve highly selective photoreduction of CO to ethylene.

J Colloid Interface Sci

December 2024

Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, PR China; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China.

In this work, Pt single atoms (SAs) were engineered on the surface of CdInS (CIS) to trigger abundant generation and stable existence of sulfur vacancies (S). Through quasi in situ X-ray photoelectron spectroscopy (XPS) and work function analysis, the photogenerated electrons are first captured by Pt SAs and S, and then transferred from Pt SAs to S, ultimately increasing the electron density of S. Meanwhile, S have significant advantages in adsorbing CO molecules.

View Article and Find Full Text PDF

A novel metal-organic framework (MOF), (Cu-S)MOF, with a copper-sulfur planar structure was applied to photocatalytic H production application. (Cu-S)MOF@ZnS nanocomposite was synthesized using a microwave-assisted hydrothermal approach. The formation of (Cu-S)MOF and wurtzite ZnS in the composite nanoparticles was analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FESEM), and high-resolution transmission electron microscope (HRTEM).

View Article and Find Full Text PDF

Solar-Driven Sulfide Oxidation Paired With CO Reduction Based on Vacancies Engineering of Copper Selenide.

Small

December 2024

Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin, 300350, P. R. China.

Photovoltaic-driven electrochemical (PV-EC) carbon dioxide reduction (COR) coupled with sulfide oxidation (SOR) can efficiently convert the solar energy into chemical energy, expanding its applications. However, developing low-cost electrocatalysts that exhibit high selectivity and efficiency for both COR and SOR remains a challenge. Herein, a bifunctional copper selenide catalyst is developed with copper vacancies (v-CuSe) for the COR-SOR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!