Signaling through immune checkpoint receptors may lead to T-cell exhaustion and function as immune escape mechanisms in cancer. For diffuse large B-cell lymphoma (DLBCL), the mechanistic and prognostic importance of these markers on tumor cells and the tumor microenvironment remains unclear. We determined the immunohistochemical expression of PD-1, PD-L1, TIM-3, and LAG-3 on tumor cells and on tumor infiltrating lymphocytes (TILs) among 123 DLBCL patients. TIM-3 showed positive staining on tumor cells in 39% of DLBCL cases and PD-L1 expression was noted in 15% of cases. Both PD-1 and LAG-3 were positive on tumor cells in a minority of DLBCL cases (8.3% and 7.5%, respectively), but were more widely expressed on TILs in a correlated manner. With median follow-up of 44 months ( = 70, range 5-85), 4-year progression-free survival (PFS) and overall survival (OS) rates were significantly inferior among DLBCL patients with high vs low/negative TIM-3 expression (PFS: 23% [95% CI 7% to 46%] vs 60% [95% CI 43% to 74%], respectively, = 0.008; OS: 30% [95% CI 10% to 53%] vs 74% [95% CI 58% to 85%], respectively, = 0.006). Differences in OS remained significant when controlling for International Prognostic Index in Cox regression analyses (HR 3.49 [95% CI 1.40-6.15], = 0.007). In addition, we observed that co-culture of DLBCL cell lines with primed T cells in the presence of anti-LAG-3 and anti-TIM-3 induced potent dose-dependent increases in cell death via AcellaTox and IL-2 ELISA assays, suggesting potent anti-tumor activity of these compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459346 | PMC |
http://dx.doi.org/10.18632/oncotarget.26771 | DOI Listing |
ACS Nano
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
Despite the potential of sonodynamic therapy (SDT) in treating malignant tumors, the lack of effective sonosensitizers has limited its clinical implementation. In this study, we explored the relationship between the heteroatom doping concentration in metal-organic frameworks and interface formation after pyrolysis by regulating the addition of manganese sources and successfully derived Z-scheme heterojunctions MnO/(A/R)TiO (MTO) in situ from MIL-125-NH (Ti/Mn). The electron transfer pathway introduced by interfacial contact promoted carrier separation and greatly preserved the effective redox components, significantly influencing the performance of reactive oxygen species generation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China.
Epstein-Barr nuclear antigen 1 (EBNA1), a sequence-specific DNA binding protein of Epstein-Barr virus (EBV), is essential for viral genome replication and maintenance and is therefore an attractive target for the therapeutic intervention of EBV-associated cancers. Several EBNA1-specific inhibitors have demonstrated the ability to block EBNA1 function in vitro, but practical delivery strategies for these inhibitors in vivo are still lacking. Here, we report an intelligent hierarchical targeting theranostic nanosystem (denoted as mZGOCS@MnO-P5) that integrates an azide (N3) terminal dual-targeting peptide (N3-P5), a tumor microenvironment-responsive degradable MnO nanosheet, and a mesoporous ZnGaO:Cr, Sn near-infrared persistent luminescence (NIR-PL) nanosphere (mZGOCS).
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan 411105, P.R. China.
The challenge of "false positive" signals significantly complicates tumor localization and surgical resection, which are pivotal for successful tumor surgeries. Therefore, the development of a method for preoperative tumor localization and intraoperative margin determination holds considerable promise for improving surgical outcomes. In this study, a zero-crosstalk ratiometric tumor-targeting near-infrared (NIR) fluorescent probe was developed for precise cancer diagnosis and intraoperative navigation via NIR fluorescence imaging.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104.
Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, and , where mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.
is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!