A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Combined metabolic, phenomic and genomic data to prioritize atrial fibrillation-related metabolites. | LitMetric

Combined metabolic, phenomic and genomic data to prioritize atrial fibrillation-related metabolites.

Exp Ther Med

Department of Cardiology, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang 832000, P.R. China.

Published: May 2019

Metabolites in atrial fibrillation (AF) were characterized to further explore the molecular mechanisms of AF by integrating metabolic, phenomic and genomic data. Gene expression data on AF (E-GEOD-79768) were downloaded from the EMBL-EBI database, followed by identification of differentially expressed genes (DEGs) which were used to construct gene-gene network. Then, multi-omics composite networks were constructed. Subsequently, random walk with restart was expanded to a multi-omics composite network to identify and prioritize the metabolites according to the AF-related seed genes deposited in the OMIM database, the whole metabolome as candidates and the phenotype of AF. Using the interaction score among metabolites, we extracted the top 50 metabolites, and identified the top 100 co-expressed genes interacted with the top 50 metabolites. Based on the FDR <0.05, 622 DEGs were extracted. In order to demonstrate the intrinsic mode of this method, we sorted the metabolites of the composite network in descending order based on the interaction scores. The top 5 metabolites were respectively weighed potassium, sodium ion, chitin, benzo[a]pyrene-7,8-dihydrodiol-9,10-oxide, and celebrex (TN). Potassium and sodium ion possessed higher degrees in the subnetwork of the entire composite network and the co-expressed network. Metabolites such as potassium and sodium ion may provide valuable clues for early diagnostic and therapeutic targets for AF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468506PMC
http://dx.doi.org/10.3892/etm.2019.7443DOI Listing

Publication Analysis

Top Keywords

metabolic phenomic
8
phenomic genomic
8
genomic data
8
multi-omics composite
8
top metabolites
8
metabolites
6
combined metabolic
4
data prioritize
4
prioritize atrial
4
atrial fibrillation-related
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!