Barley worldwide is affected seriously by Fusarium seedling blight (FSB) and Fusarium head blight (FHB) diseases caused by the species The objective of this study was to facilitate the resistance of hulled and hull-less barley at different growth stages to according to direct parameters: disease rating (DR), fresh weight of leaves and roots, kernel weight per spike, kernel number per spike, plump kernels, and indirect parameters - chlorophyll fluorescence (CF). Plate assay, greenhouse and field tests were performed on 30 spring barley doubled haploid (DH) lines and their parents infected with . Direct parameters proved that hulled genotypes show less symptoms. Most studied chlorophyll fluorescence (CF) parameters (apart from DIo/CS - amount of energy dissipated from PSII for laboratory test, TRo/CS - amount of excitation energy trapped in PSII reaction centers, ETo/CS - amount of energy used for electron transport and RC/CS - number of active reaction centres in the state of fully reduced PSII reaction center in field experiment) were significantly affected by infection. In all experiments, hulled genotypes had higher values of CF parameters compared to hull-less ones. Significant correlations were detected between direct and indirect parameters and also between various environments. It was revealed that ABS/CS, TRo/CS, and RC/CS have significant positive correlation in greenhouse test and field experiment. Significant correlations suggest the possibility of applying the CF parameters in selection of barley DH lines resistant to infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6464203 | PMC |
http://dx.doi.org/10.5423/PPJ.OA.07.2018.0124 | DOI Listing |
Conserv Physiol
May 2024
Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Canberra, Australian Capital Territory, Australia.
Given the rising frequency of thermal extremes (heatwaves and cold snaps) due to climate change, comprehending how a plant's origin affects its thermal tolerance breadth (TTB) becomes vital. We studied juvenile plants from three biomes: temperate coastal rainforest, desert and alpine. In controlled settings, plants underwent hot days and cold nights in a factorial design to examine thermal tolerance acclimation.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Plant Anatomy, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Budapest, Hungary.
Investigating the effects of drought stress and subsequent recovery on the structure and function of chloroplasts is essential to understanding how plants adapt to environmental stressors. We investigated Ctenanthe setosa (Roscoe) Eichler, an ornamental plant that can tolerate prolonged drought periods (40 and 49 days of water withdrawal). Conventional biochemical, biophysical, physiological and (ultra)structural methods combined for the first time in a higher plant with in vivo small-angle neutron scattering (SANS) were used to characterize the alterations induced by drought stress and subsequent recovery.
View Article and Find Full Text PDFSci Data
January 2025
Zhejiang Academy of Surveying and Mapping, Hangzhou, 310001, China.
Solar-induced chlorophyll fluorescence (SIF) is an indicator of vegetation photosynthesis, and multiple satellite SIF products have been generated in recent years. However, current SIF products are limited for applications toward vegetation photosynthesis monitoring because of low spatial resolution or spatial discontinuity. This study uses a spatial downscaling method to obtain a redistribution of the original TROPOspheric Monitoring Instrument (TROPOMI) SIF (OSIF).
View Article and Find Full Text PDFPhotosynth Res
January 2025
State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Maize (Zea mays L.) performs highly efficient C photosynthesis by dividing photosynthetic metabolism between mesophyll and bundle sheath cells. In vivo physiological measurements are indispensable for C photosynthesis research as photosynthetic activities are easily interrupted by leaf section or cell isolation.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Horticulture, University of Georgia, Athens, GA, USA.
Optimizing photosynthetic lighting is essential for maximizing crop production and minimizing electricity costs in controlled environment agriculture (CEA). Traditional lighting methods often neglect the impact of environmental factors, crop type, and light acclimation on photosynthetic efficiency. To address this, a chlorophyll fluorescence-based biofeedback system was developed to adjust light-emitting diode (LED) intensity based on real-time plant responses, rather than using a fixed photosynthetic photon flux density (PPFD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!