Introducing chiral silicon centers was explored for the asymmetric Rh-catalyzed cyclization of dihydrosilanes to enantiomerically enriched spirosilanes as targets to enable access to enantiostable pentacoordinate silicates. The steric rigidity required in such systems demands the presence of two naphthyl or benzo[b]thiophene groups. The synthetic approach to the expanded spirosilanes extends Takai's method (Kuninobu et al. in Angew Chem Int Ed 52(5):1520-1522, 2013) for the synthesis of spirosilabifluorenes in which both a Si-H and a C-H bond of a dihydrosilane are activated by a rhodium catalyst. The expanded dihydrosilanes were obtained from halogenated aromatic precursors. Their asymmetric cyclization to the spirosilanes were conducted with [Rh(cod)Cl] in the presence of the chiral bidentate phosphane ligands (R)-BINAP, (R)-MeO-BIPHEP, and (R)-SEGPHOS, including derivatives with P-(3,5-t-Bu-4-MeO)-phenyl (DTBM) groups. The highest enantiomeric excess of 84% was obtained for 11,11'-spirobi[benzo[b]-naphtho[2,1-d]silole] with the DTBM-SEGPHOS ligand.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445452 | PMC |
http://dx.doi.org/10.1007/s11244-018-0967-5 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
The University of Hong Kong, Department of Chemistry, Pokfulam Road, 999077, Hong Kong, CHINA.
Electrically conductive coordination polymers (ECCPs), particularly those incorporating benzenehexathiol (BHT) ligands, are emerging as a distinctive class of electronic materials with tunable semiconducting and metallic properties. However, the exploration of novel ECCPs with low-symmetry structures and electrical anisotropy remains under development. Here, we report the on-water surface synthesis of a novel ECCP, namely Cu5BHT, which exhibits a low-symmetry structure and unique in-plane electrical anisotropy that differs from the well-known Cu3BHT phase.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China. Electronic address:
Background: Digital recombinase polymerase amplification (dRPA) is an effective tool for the absolute quantification of nucleic acids and the detection of rare mutations. Due to the high viscosity or other physical properties of the reagent, this can compromise the accuracy and reproducibility of detection results, which limits the broader adoption and practical application of this technology. In this study, we developed an asymmetric contact angle digital isothermal detection (ACA-DID) chip and optimized the ACA-DID chip structure to achieve rapid digital recombinase polymerase amplification.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
The difluoromethyl group is a crucial fluorinated moiety with distinctive biological properties, and the synthesis of chiral CF₂H-containing analogs has been recognized as a powerful strategy in drug design. To date, the most established method for accessing enantioenriched difluoromethyl compounds involves the enantioselective functionalization of nucleophilic and electrophilic CF₂H synthons. However, this approach is limited by lower reactivity and reduced enantioselectivity.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of System Biology, Institute of Cytology and Genetics, Novosibirsk 630090, Russia.
Transcription factors (TFs) are the main regulators of eukaryotic gene expression. The cooperative binding of at least two TFs to genomic DNA is a major mechanism of transcription regulation. Massive analysis of the co-occurrence of overrepresented pairs of motifs for different target TFs studied in ChIP-seq experiments can clarify the mechanisms of TF cooperation.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Research Laboratory of Asymmetric Synthesis and Molecular Engineering of Materials for Organic Electronic (LR18ES19), Department of Physics, Faculty of Sciences of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia.
This paper explores a novel group of D-π-A configurations that has been specifically created for organic solar cell applications. In these material compounds, the phenothiazine, the furan, and two derivatives of the thienyl-fused IC group act as the donor, the π-conjugated spacer, and the end-group acceptors, respectively. We assess the impact of substituents by introducing bromine atoms at two potential substitution sites on each end-group acceptor (EG1 and EG2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!