The biological carbon pump exports carbon fixed by photosynthesis out of the surface ocean and transfers it to the deep, mostly in the form of sinking particles. Despite the importance of the pump in regulating the air-sea CO balance, the magnitude of global carbon export remains unclear, as do its controlling mechanisms. A possible sinking flux of carbon to the mesopelagic zone may be via the mixed-layer pump: a seasonal net detrainment of particulate organic carbon (POC)-rich surface waters, caused by sequential deepening and shoaling of the mixed layer. In this study, we present a full year of daily small-particle POC concentrations derived from glider optical backscatter data, to study export variability at the Porcupine Abyssal Plain (PAP) sustained observatory in the Northeast Atlantic. We observe a strong seasonality in small-particle transfer efficiency, with a maximum in winter and early spring. By calculating daily POC export driven by mixed-layer variations, we find that the mixed-layer pump supplies an annual flux of at least 3.0 ± 0.9 g POC·m·year to the mesopelagic zone, contributing between 5% and 25% of the total annual export flux and likely contributing to closing a gap in the mesopelagic carbon budget found by other studies. These are, to our best knowledge, the first high-frequency observations of export variability over the course of a full year. Our results support the deployment of bio-optical sensors on gliders to improve our understanding of the ocean carbon cycle on temporal scales from daily to annual.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472636PMC
http://dx.doi.org/10.1029/2018GB005963DOI Listing

Publication Analysis

Top Keywords

carbon
8
carbon export
8
export flux
8
northeast atlantic
8
mesopelagic zone
8
mixed-layer pump
8
full year
8
export variability
8
export
6
high-frequency variability
4

Similar Publications

Human pose estimation is an important research direction in the field of computer vision, which aims to accurately identify the position and posture of keypoints of the human body through images or videos. However, multi-person pose estimation yields false detection or missed detection in dense crowds, and it is still difficult to detect small targets. In this paper, we propose a Mamba-based human pose estimation.

View Article and Find Full Text PDF

Research Progress of MEMS Gas Sensors: A Comprehensive Review of Sensing Materials.

Sensors (Basel)

December 2024

Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.

The MEMS gas sensor is one of the most promising gas sensors nowadays due to its advantage of small size, low power consumption, and easy integration. It has been widely applied in energy components, portable devices, smart living, etc. The performance of the gas sensor is largely determined by the sensing materials, as well as the fabrication methods.

View Article and Find Full Text PDF

Biomedical Application Prospects of Gadolinium Oxide Nanoparticles for Regenerative Medicine.

Pharmaceutics

December 2024

Department of Hospital Surgery, Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technology, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.

Background/objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (GdO NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines.

Methods: The powder of GdO NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of GdO NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source.

View Article and Find Full Text PDF

: Cancer remains one of the leading causes of death worldwide, and thus, there is a need for the development of innovative and more effective treatment strategies. The aim of the study was to evaluate two types of nanoparticles-nanospheres and micelles-obtained from PLA-based polymers to discover their potential for delivering four types of phenothiazine derivatives. : The morphology, drug-loading properties, cytocompatibility, hemolytic properties and anticancer activity were analyzed.

View Article and Find Full Text PDF

Pathogen bacteria appear and survive on various surfaces made of steel or glass. The existence of these bacteria in different forms causes significant problems in healthcare facilities and society. Therefore, the surface engineering of highly potent antimicrobial coatings is highly important in the 21st century, a period that began with a series of epidemics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!