Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, empirical data are used to estimate the parameters of a sociohydrological flood risk model. The proposed model, which describes the interactions between floods, settlement density, awareness, preparedness, and flood loss, is based on the literature. Data for the case study of Dresden, Germany, over a period of 200 years, are used to estimate the model parameters through Bayesian inference. The credibility bounds of their estimates are small, even though the data are rather uncertain. A sensitivity analysis is performed to examine the value of the different data sources in estimating the model parameters. In general, the estimated parameters are less biased when using data at the end of the modeled period. Data about flood awareness are the most important to correctly estimate the parameters of this model and to correctly model the system dynamics. Using more data for other variables cannot compensate for the absence of awareness data. More generally, the absence of data mostly affects the estimation of the parameters that are directly related to the variable for which data are missing. This paper demonstrates that combining sociohydrological modeling and empirical data gives additional insights into the sociohydrological system, such as quantifying the forgetfulness of the society, which would otherwise not be easily achieved by sociohydrological models without data or by standard statistical analysis of empirical data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472491 | PMC |
http://dx.doi.org/10.1029/2018WR024128 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!