Surfactant-Induced Self-Assembly of CdTe Quantum Dots into Multicolor Luminescent Hybrid Vesicles.

Langmuir

Discipline of Chemistry , Indian Institute of Technology Indore, Simrol Campus, Khandwa Road , Indore 453552 , MP , India.

Published: May 2019

Here, we report the interaction of mercaptosuccinic acid (MSA)-capped CdTe quantum dots (QDs) with hexadecyltrimethylammonium bromide (CTAB) surfactant and subsequent formation of self-assembled multicolor luminescent vesicles in aqueous medium. A continuous phase sequence from clear (C1) to turbid (T1), precipitate (P), turbid (T2), and clear (C2) has been observed for QD solution upon increasing the concentration of positively charged CTAB, indicating dynamic equilibrium between various self-assembled supramolecular structures. In contrast, no such changes have been observed in the presence of negatively charged sodium dodecyl sulfate and neutral Triton X-100 surfactants, indicating specific electrostatic interactions behind the observed phase separation behavior. Epi-fluorescence imaging in the C1 and C2 regions reveals the presence of surfactant-induced aggregates of QD. The morphologies and photoluminescence properties of self-assembled supramolecular structures in the T1 and T2 region have been explored by using scanning electron microscopy (SEM), atomic force microscopy (AFM), and confocal laser scanning microscopy (CLSM). SEM and AFM images reveal distinct spherical vesicles in the T1 and T2 regions of the binary mixture. Moreover, CLSM results show that these spherical vesicles are inherently luminescent due to the presence of self-assembled QDs. Fabrication of multicolor luminescent vesicles has been demonstrated by tuning the size of CdTe QD. Using CLSM, we have further demonstrated efficient encapsulation of Rhodamine 6G dye into these self-assembled vesicles without any structural disruption. While these luminescent vesicles are quite stable in neutral and basic pH (pH = 6.5-11), they are unstable in acidic pH (pH = 4.5-5.5). Moreover, it has been observed that this pH-responsive structural change is totally reversible. The present findings of self-assembled luminescent vesicles from QD-CTAB binary mixture may open up new opportunities in various applications such as bioimaging, drug delivery, and sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b00357DOI Listing

Publication Analysis

Top Keywords

luminescent vesicles
16
multicolor luminescent
12
cdte quantum
8
quantum dots
8
vesicles
8
self-assembled supramolecular
8
supramolecular structures
8
spherical vesicles
8
binary mixture
8
luminescent
6

Similar Publications

Globally, prostate cancer is the second most common malignancy in males, with over 400 thousand men dying from the disease each year. A common treatment modality for localized prostate cancer is radiotherapy. However, up to half of high-risk patients can relapse with radiorecurrent prostate cancer, the aggressive clinical progression of which remains severely understudied.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have gained attention as facilitators of intercellular as well as interkingdom communication during host-microbe interactions. Recently we showed that upon infection, host polymorphonuclear leukocytes produce antifungal EVs targeting the clinically important fungal pathogen ; however, the small size of EVs (<1 µm) complicates their functional analysis. Here, we employed a more tractable, reporter-based system to label host alveolar epithelial cell-derived EVs and enable their visualization during interaction.

View Article and Find Full Text PDF

Nucleic acid detection is important in a wide range of applications, including disease diagnosis, genetic testing, biotechnological research, environmental monitoring, and forensic science. However, the application of nucleic acid detection in various fields is hindered by the lack of sensitive, accurate, and inexpensive methods. This study introduces a simple approach to enhance the sensitivity for the accurate detection of nucleic acids.

View Article and Find Full Text PDF

Enhanced quantification and cell tracking of dual fluorescent labeled extracellular vesicles.

Int J Pharm

December 2024

Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona 08017, Spain. Electronic address:

Article Synopsis
  • Extracellular Vesicles (EVs) are tiny particles crucial for understanding diseases and potential therapies, but current methods for studying them are inefficient and complicated.
  • Researchers developed a new technique to engineer small EVs (sEVs) by using a special plasmid that produces fluorescent proteins, allowing for better visualization and characterization of these vesicles.
  • The study found that the engineered sEVs maintained their natural properties and could be effectively quantified and tracked, thus providing a valuable method for studying their role in cell communication and developing targeted therapies.
View Article and Find Full Text PDF

Peripubertal exposure to oxyfluorfen, a diphenyl herbicide, delays pubertal development in the male rat by antagonizing androgen receptor activity.

Toxicol Sci

November 2024

Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA, ORD, U.S. EPA, RTP, NC.

We recently identified the herbicide oxyfluorfen as an inhibitor of iodide uptake by the sodium iodide symporter (NIS), a key step in thyroid hormone synthesis, using in vitro assays. We also observed a suppression of serum T4 and T3 in juvenile rats exposed orally to oxyfluorfen for 4-8 days. The purpose of the present study was to further evaluate effects of an extended 31-day oral exposure using a male pubertal rat study (15 to 500 mg/kg).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!