Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.9b00913 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Nankai University, College of Chemistry, Weijin Road 94, 300071, Tianjin, CHINA.
As an emerging class of optoelectronic materials, multi-resonance (MR) 1,4-BN-heteroarenes have been extensively employed as narrowband electroluminescence materials, whereas their absorption feature has largely been neglected. Here we construct the first MR-molecule-based phototransistor for filterless narrowband photodetectors (NBPDs) by anchoring narrowband absorption MR molecules on the high-mobility semiconductor indium-zinc-oxide (IZO) film. The resulting device exhibits high-performance photodetection with a small full-width at half-maximum (FWHM) of 33 nm, which represents a new record for NBPDs based on intrinsic narrowband absorbing materials.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.
The pursuit of boron-based organic compounds with multiresonance (MR)-induced thermally activated delayed fluorescence (TADF) is propelled by their potential as narrowband blue emitters for wide-gamut displays. Although boron-doped polycyclic aromatic hydrocarbons in MR compounds share common structural features, their molecular design traditionally involves iterative approaches with repeated attempts until success. To address this, we implemented machine learning algorithms to establish quantitative structure-property relationship models, predicting key optoelectronic characteristics, such as full width at half maximum (FWHM) and main peak wavelength, for deep-blue MR candidates.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
To simplify the composition and improve the efficacy of metal-phenolic network (MPN)-based nanomedicine, herein, we designed an MPN platform to deliver programmed death ligand-1 (PD-L1) antibody (anti-PD-L1) for combined tumor chemo/chemodynamic/immune therapy. Here, generation 5 poly(amidoamine) dendrimers conjugated with gossypol (Gos) through boronic ester bonds were used as a synthetic polyphenol to coordinate Mn, and then complexed with anti-PD-L1 to obtain the nanocomplexes (for short, DPGMA). The prepared DPGMA exhibited good water dispersibility with a hydrodynamic size of 166.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
Expanded heterohelicenes composed of alternating linearly and angularly fused multi-resonance (MR) skeletons have gained wide interest owing to their promising narrowband emissions. Herein, a pair of sym- and asym-expanded heterohelicene isomers was obtained by merging boron/oxygen (B/O)-embedded MR triangulene and indolo[3,2,1-jk]carbazole units via one-pot synthesis. Owing to their fully resonating extended helical skeleton, the target heterohelicenes exhibit a significantly narrowed spectra bandwidth while emission red-shifting, thus affording deep-blue narrowband emission with a peak at approximately 460 nm, full-width-at-half-maximum (FWHM) of only 18 nm, and near-unity photoluminescence quantum yields.
View Article and Find Full Text PDFMolecules
December 2024
Department of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
Thermally activated delayed fluorescence (TADF) materials with high photoluminescence quantum yields and a fast reverse intersystem crossing (RISC) are of the highest interest for organic light-emitting diodes (OLEDs). In the past decade, triaryl boranes with multiple resonance effect (MR) have captured significant attention. The efficiency of MR-TADF emitters strongly depends on small singlet-triplet energy gaps (ΔE), but also on large reverse intersystem crossing (RISC) rate constants (k).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!