Fluorine-doped Fe(Se, Te) has been successfully synthesized using the melting method. A dual-oscillation effect was found in the F-doped sample, which combined both microstructural oscillation and chemical compositional oscillation. The microstructural oscillation could be attributed to alternate growth of tetragonal β-Fe(Se, Te) and hexagonal δ-Fe(Se, Te), which formed a pearlite-like structure and led to the enhancement of δ l flux pinning due to the alternating distributed nonsuperconducting δ-Fe(Se, Te) phase. The chemical compositional oscillations in β-Fe(Se, Te) phase were because of the inhomogeneously distributed Se and Te, which changes the pinning mechanism from surface pinning in the undoped sample to Δκ pinning in the 5% F-doped one. As a result, the critical current, upper critical field, and thermally activated flux-flow activation energy of FeSeTeF were enhanced by 7, 2, and 3 times, respectively. Our work revealed the physical insights into F-doping resulting in high-performance Fe(Se, Te) superconductors and inspired a new approach to optimize superconductivities in iron-based superconductors through phase and element manipulations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b02469DOI Listing

Publication Analysis

Top Keywords

microstructural oscillation
8
chemical compositional
8
boosting superconducting
4
superconducting properties
4
properties fese
4
fese dual-oscillation
4
dual-oscillation phenomena
4
phenomena induced
4
induced fluorine
4
fluorine doping
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!