Background And Purpose: Periventricular nodular heterotopias (PNHs) are frequently associated with drug-resistant epilepsy (DRE). Although magnetic resonance imaging (MRI) can define the morphological features of PNHs, still there is a need to assess their metabolic activity in order to provide useful information on epileptogenicity and long-term outcome. To that end, we investigated the ability of F-FDG PET to identify seizure onset zone in order to assess the metabolic activity of the ectopic neurons and to provide prognostic information on the postsurgical outcome.

Methods: Sixteen patients (6 men and 10 women; ranging between 24 and 53 years of age) with PNHs-related DRE were evaluated. All patients underwent clinical evaluation, Stereo-electroencephalogram (SEEG), brain MRI, and F-FDG brain PET/CT. PET images were superimposed on the patient-specific 3-dimensional-brain MRI. The metabolic activity of each nodule and of their cortex was visually and semiquantitatively assessed. The outcome after intervention was assessed in all patients using Engel classification.

Results: Thirty-one heterotopic sites were identified. Twenty-one of 23 nodules with detectable electric activity on SEEG were identified by PET (91.3%), while 5 of 8 of nodules without electric activity showed no metabolism on PET (62.5%). Overall, the concordance between SEEG and FDG-PET was 26/31 (83.9%). Furthermore, cortical metabolic alterations were depicted, correlating with epileptogenic areas. A favorable postsurgical outcome was reported in 13 patients (81.3%). The presence of a hypometabolic nodule significantly correlated with a worse outcome after surgical therapy (P = .036).

Conclusions: In PNHs-related epilepsy, FDG-PET more accurately identifies epileptogenic foci, which aids surgical planning and in postoperative seizure control.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jon.12620DOI Listing

Publication Analysis

Top Keywords

metabolic activity
12
periventricular nodular
8
nodular heterotopias
8
long-term outcome
8
assess metabolic
8
electric activity
8
patients
5
outcome
5
activity
5
role fdg-pet
4

Similar Publications

Objectives: Hepatocellular carcinoma (HCC) represents the third-most prevalent cancer in humans worldwide. The current study's objective is to search for the potentiality of H. Wendl () leaf extract in a nanoemulsion (NE) form in enhancing radiotherapy against HCC induced in rats using diethylnitrosamine (DEN).

View Article and Find Full Text PDF

Understanding the dynamic pathophysiology of diseases in the lung, such as asthma and chronic asthma, chronic obstructive pulmonary disease, and lung cancer, is crucial for the treatment, analysis, and outcome of these diseases. Unlike other traditional models, we suggest a protocol that is sustainable and reproducible and offers different analysis methods while maintaining in vivo lung architecture and immune dynamics. This protocol allows one to study the pathophysiological changes, including changes to the immune cells, cytokines, and mediators, in 30 precision-cut lung slices from a single murine lung.

View Article and Find Full Text PDF

Aims: To describe the nutritional status of people with diabetes-related foot complications and explore the association between nutrition and ulceration healing.

Methods: This retrospective cohort study included attendees of a diabetes foot service who completed a dietary questionnaire. Diet was compared to guideline recommendations and biochemical measures were recorded.

View Article and Find Full Text PDF

A Natural Autophagy Activator Castanea crenata Flower Alleviates Skeletal Muscle Ageing.

J Cachexia Sarcopenia Muscle

February 2025

Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea.

Background: Sarcopenia, characterized by a gradual decline in skeletal muscle mass and function with age, significantly impacts both quality of life and mortality. Autophagy plays a crucial role in maintaining muscle health. There is growing interest in leveraging autophagy to mitigate muscle ageing effects.

View Article and Find Full Text PDF

Fatty Acid Profiles Linked to Organohalogen Exposure in Cetaceans from the Northern South China Sea.

Environ Sci Technol

January 2025

School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.

Increasing evidence suggests that organohalogen contaminants (OHCs) could disrupt lipid metabolism in organisms, prompting consideration of fatty acids (FAs) as biological tools for assessing chemical stress in biological systems. This study examined 87 OHCs and 32 FAs in two sentinel cetacean species─Indo-Pacific humpback dolphins ( = 128) and Indo-Pacific finless porpoises ( = 26)─from the northern South China Sea (NSCS), a global hotspot for OHCs. Our results revealed higher OHC levels in these cetaceans than global averages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!