Tissue-resident macrophages (TRMs) are highly heterogeneous and engage in a wide range of diverse functions. Yet, the heterogeneities of their origins and functions remain incompletely defined. Here, we report the identification and characterization of an ectoderm-derived myeloid-like cell, which we refer to as metaphocyte. We show that metaphocytes are highly similar to conventional Langerhans cells (cLCs), the resident macrophages in epidermis, in transcriptome, morphology, and anatomic location. However, unlike cLCs, metaphocytes respond neither to tissue injury nor to bacterial infection but rather sample soluble antigens from external environment through transepithelial protrusions and transfer them to cLCs via apoptosis-phagocytosis axis. This antigen transfer is critical for zebrafish to respond to soluble antigens because the depletion of metaphocytes significantly reduces cLC antigen uptake. Our study documents the existence of ectoderm-derived myeloid-like cells that manifest distinct function from conventional TRMs and opens a new paradigm for investigation of the heterogeneities of resident immune cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.devcel.2019.03.028 | DOI Listing |
Cell Rep
October 2020
Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518055, China. Electronic address:
Immune cells in the mucosal barriers of vertebrates are highly heterogeneous in their origin and function. This heterogeneity is further exemplified by the recent discovery of ectoderm-derived immune cells-metaphocytes in zebrafish epidermis. Yet, whether non-hematopoiesis-derived immune cells generally exist in barrier tissues remains obscured.
View Article and Find Full Text PDFDev Cell
May 2019
Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China. Electronic address:
Tissue-resident macrophages (TRMs) are highly heterogeneous and engage in a wide range of diverse functions. Yet, the heterogeneities of their origins and functions remain incompletely defined. Here, we report the identification and characterization of an ectoderm-derived myeloid-like cell, which we refer to as metaphocyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!